• Title/Summary/Keyword: modern biotechnology

Search Result 118, Processing Time 0.022 seconds

Brain plasticity and ginseng

  • Myoung-Sook Shin;YoungJoo Lee;Ik-Hyun Cho;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.286-297
    • /
    • 2024
  • Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.

Lipid Metabolism and Regulation in Chickens (닭의 지방대사와 조절)

  • Yang Soo Moon
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.27-37
    • /
    • 2024
  • The poultry plays a crucial role in the animal industry, providing humans with efficient, high-quality animal protein. The rapid growth and short generational intervals of broilers offer significant benefits compared to other economic animals. This growth and increased muscle mass in modern commercial broilers result from advancements in breeding. However, the high productivity of contemporary broilers indicates they are approaching their physiological limits, with excessive fat accumulation becoming a significant industry issue. This not only reduces lean meat yield and feed efficiency but also negatively impacts consumers, especially due to problematic abdominal fat, which consumes more energy than lean meat production. Laying hens, reared for extended periods, maintain high productivity, producing a substantial number of eggs. This productivity in laying hens, akin to broilers, stems from genetic selection and breeding. For egg production, laying hens require physiological support for necessary nutrients. In this context, yolk fat accumulation is a critical physiological process. Lipoproteins, essential in avian lipid metabolism, are vital for yolk and body fat accumulation. Understanding these lipoproteins and their metabolism is key to developing healthier, more productive animals, offering economic benefits to farmers and improved nutritional quality to consumers. This review focuses on the physiological aspects of dietary fat transport, fatty acid biosynthesis in the liver, fat accumulation in the abdomen and muscles, and lipid deposition in egg yolks in chickens. It also highlights recent research trends in the regulation of fat metabolism in poultry.

Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus

  • Di Wang;Dongjie Chen;Shengkui Xu;Fang Wei;Hongyuan Zhao
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.54.1-54.16
    • /
    • 2024
  • Importance: As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. Objective: This study examined the function of EP0 to provide a direction for its in-depth analysis. Methods: In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. Results: This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. Conclusions and Relevance: These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.

The Possible Mechanisms Involved in Citrinin Elimination by Cryptococcus podzolicus Y3 and the Effects of Extrinsic Factors on the Degradation of Citrinin

  • Zhang, Xiaoyun;Lin, Zhen;Apaliya, Maurice Tibiru;Gu, Xiangyu;Zheng, Xiangfeng;Zhao, Lina;Abdelhai, Mandour Haydar;Zhang, Hongyin;Hu, Weicheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2119-2128
    • /
    • 2017
  • Citrinin (CIT) is a toxic secondary metabolite produced by fungi belonging to the Penicillium, Aspergillus, and Monascus spp. This toxin has been detected in many agricultural products. In this study, a strain Y3 with the ability to eliminate CIT was screened and identified as Cryptococcus podzolicus, based on the sequence analysis of the internal transcribed spacer region. Neither uptake of CIT by cells nor adsorption by cell wall was involved in CIT elimination by Cryptococcus podzolicus Y3. The extracellular metabolites of Cryptococcus podzolicus Y3 stimulated by CIT or not showed no degradation for CIT. It indicated that CIT elimination was attributed to the degradation of intracellular enzyme(s). The degradation of CIT by C. podzolicus Y3 was dependent on the type of media, yeast concentration, temperature, pH, and initial concentration of CIT. Most of the CIT was degraded by C. podzolicus Y3 in NYDB medium at 42 h but not in PDB medium. The degradation rate of CIT was the highest (94%) when the concentration of C. podzolicus Y3 was $1{\times}10^8cells/ml$. The quantity of CIT degradation was highest at $28^{\circ}C$, and there was no degradation observed at 3$5^{\circ}C$. The study also showed that acidic condition (pH 4.0) was the most favorable for CIT degradation by C. podzolicus Y3. The degradation rate of CIT increased to 98% as the concentration of CIT was increased to $20{\mu}g/ml$. The toxicity of CIT degradation product(s) toward HEK293 was much lower than that of CIT.

Degradation Kinetics of Carbohydrate Fractions of Ruminant Feeds Using Automated Gas Production Technique

  • Seo, S.;Lee, Sang C.;Lee, S.Y.;Seo, J.G.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.356-364
    • /
    • 2009
  • The current ruminant feeding models require parameterization of the digestion kinetics of carbohydrate fractions in feed ingredients to estimate the supply of nutrients from a ration. Using an automated gas production technique, statistically welldefined digestion rate of carbohydrate, including soluble carbohydrate, can be estimated in a relatively easy way. In this study, the gas production during in vitro fermentation was measured and recorded by an automated gas production system to investigate degradation kinetics of carbohydrate fractions of a wide range of ruminant feeds: corn silage, rice straw, corn, soybean hull, soybean meal, and cell mass from lysine production (CMLP). The gas production from un-fractionated, ethanol insoluble residue and neutral detergent insoluble residue of the feed samples were obtained. The gas profiles of carbohydrate fractions on the basis of the carbohydrate scheme of the Cornell Net Carbohydrate and Protein System (A, B1, B2, B3 and C) were generated using a subtraction approach. After the gas profiles were plotted with time, a curve was fitted with a single-pool exponential equation with a discrete lag to obtain kinetic parameters that can be used as inputs for modern nutritional models. The fractional degradation rate constants (Kd) of corn silage were 11.6, 25.7, 14.8 and 0.8%/h for un-fractioned, A, B1 and B2 fractions, respectively. The values were statistically well estimated, assessed by high t-value (>12.9). The Kd of carbohydrate fractions in rice straw were 4.8, 21.1, 5.7 and 0.5%/h for un-fractioned, A, B1 and B2 fractions, respectively. Although the Kd of B2 fraction was poorly defined with a t-value of 4.4, the Kd of the other fractions showed tvalues higher than 21.9. The un-fractioned corn showed the highest Kd (18.2%/h) among the feeds tested, and the Kd of A plus B1 fraction was 18.7%/h. Soybean hull had a Kd of 6.0, 29.0, 3.8 and 13.8%/h for un-fractioned, A, B1 and B2, respectively. The large Kd of fraction B2 indicated that NDF in soybean hull was easily degradable. The t-values were higher than 20 except for the B1 fraction (5.7). The estimated Kd of soybean meal was 9.6, 24.3, 5.0%/h for un-fractioned, A and B1 fractions, respectively. A small amount of gas (5.6 ml at 48 ho of incubation) was produced from fermentation of CMLP which contained little carbohydrate. In summary, the automated gas production system was satisfactory for the estimation of well defined (t-value >12) kinetic parameters and Kd of soluble carbohydrate fractions of various feedstuffs that supply mainly carbohydrate. The subtraction approach, however, should be applied with caution for some concentrates, especially those which contain a high level of crude protein since nitrogen-containing compounds can interfere with gas production.

Establishment of detection methods for approved LMO in Korea (국내 승인 유전자변형 작물의 검출 기법 확립)

  • Seol, Min-A;Lee, Jung Ro;Choi, Wonkyun;Jo, Beom-Ho;Moon, Jeong Chan;Shin, Su Young;Eum, Soon-Jae;Kim, Il Ryong;Song, Hae-Ryong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.196-203
    • /
    • 2015
  • AbstractLiving modified organisms (LMO) are one of the most widespread products of modern biotechnology after DNA discovery. Due to the decline of grain self-sufficiency rate and the increase of reliance on LMO imports in Korea, a series of concerns with regard to safety of living modified(LM) crops has been raised. The aim of this study is to establish the detection methods for unintentional release or growing of LMO plants in environmental conditions. To detect LM crop events, general concepts of specific primer design and PCR conditions were provided by the Joint Research Centre (JRC). The certified reference materials of seven LM events (4 soybean, 2 cotton and 1 corn) were obtained from the Institute for Reference Materials and Measurements (IRMM) and the American Oil Chemists' Society (AOCS). Genomic DNA from seven LM events were purified and PCR amplifications were carried out by using individual event-specific primer sets. LM-specific PCR products of all seven events were efficiently amplified by our methods. The results indicate that the established detection method for LMOs is suitable as a scientific tool to monitor whether the crops found in natural environments are LMOs.

The change of somatic cell embryogenesis in Kalanchoe pinnata because of agar concentration in stimulating root stress (뿌리 스트레스를 유발하는 agar농도에 따른 Kalanchoe pinnata의 체세포 배 형성 변화)

  • Park, Jongbum;Kim, Jin-Seok;Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.320-324
    • /
    • 2017
  • Development of modern agricultural machinery and accompanying agricultural development cause soil compaction and reduce growth by stressing roots. Kalanchoe pinnata was used to investigate the impact of stress on rooting and changes in plant growth and reproduction. K. pinnata forms somatic embryos capable of asexual reproduction at the edge of leaves. Impact of root pressurization of K. pinnata on somatic embryogenesis and organ differentiation according to external stress factors was investigated by using a high concentration of agar and this phenomenon was studied histologically. Agar concentration in culture media ranged from 0.5%-1.5% to induce a compression effect on roots. The stem and leaf of K. pinnata were subjected to a microtechnique process to study changes in tissue. In vivo, K. pinnata produced 2nd and 3rd plantlets at edges of leaves from lack of water and excessive lighting conditions. In in vitro culture studies, the lower the concentration of agar, the higher the population and the higher the biomass, but plantlet did not occur in leaf bends. Conversely, as concentration of agar increased, increase in the number of individuals was low. Plantlet development occurred only in agar 1.5% medium. The difference in agar concentration was a stressor in the root of K. pinnata, and thus the pattern of asexual reproduction changed from the division method in root to a plantlet generation in leaf. This suggests root pressurization may act as stress and change in the plant reproduction pattern.

Characterization Analysis of Functional Gochujang including Grain Syrup with Tomato Puree (토마토 퓨레 조청을 함유한 기능성 고추장의 특성 분석)

  • Seo, Min Jeong;Kang, Byoung Won;Park, Jeong Uck;Kim, Min Jeong;Lee, Hye Hyeon;Kim, Zae Suk;Yoo, Mi Bok;Kim, Hyun Suk;Kim, Su Mi;Jeong, Yong Kee
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1463-1469
    • /
    • 2012
  • To add functional specialty in a traditional fermentation product, Gochujang, and improve the taste and preference, an optimum fermentation condition of Gochujang supplemented with tomato puree was established in the conditions of GCJ 14, -16, -18, and -20. Varying the salinity concentration and the manufactured fermentation products, Gochujang was analyzed by the chemical nature, change in bacterial characteristics and contents of a functional chemical, lycopene, and sensory taste. As a result, the pH change of Gochujang containing tomato puree with grain syrup was diminished during the fermentation process. Its sugar contents were repeated by the increase and decrease. In addition, the water contents, salinity, and chromaticity of the Gochujang showed no significant change. Regarding the change in bacterial characteristics, total bacterial number and lactic acid bacteria number increased, with the rate of increase depending on the fermentation process. The ratio of lactic acid bacteria number against total bacterial number was confirmed to be significantly high at the conditions of GCJ 18 and -20. No significant change in the contents of lycopene was observed during the fermentation process. Notably, the change in crude proteins, crude fat, crude ash, and carbohydrates in addition to a sensory examination including taste and preference of the manufactured Gochujang suggest that the optimal fermentation product is produced in the condition of GCJ 20. Therefore, functional Gochujang satisfying a modern preference can be produced by using tomato puree with grain syrup.

Noodle Development and Its Quality Characteristics Using Fermented White and Brown Rice (발효 백미와 현미를 이용한 국수제조 및 품질특성)

  • Seo, Min Jeong;Kang, Byoung Won;Park, Jeong Uck;Kim, Min Jeong;Lee, Hye Hyeon;Jeong, Yong Kee
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1378-1383
    • /
    • 2012
  • To address the limitations of manufacturing noodle products using rice, brown rice noodles were created by the fermentation of brown rice containing several nutrients and the quality of these noodles were evaluated. White rice noodles, fermented white rice noodles, brown rice noodles, and fermented brown rice noodles were developed using white rice and brown rice, respectively. We found that the content of crude proteins present in the noodles during the fermentation process increased and the content of crude fat and carbohydrates in the noodles was reduced. In addition, the water content of brown rice noodles was twofold higher than that of white rice, although under fermentation conditions, the water content of brown rice noodles decreased slightly. A slight change of chromaticity was observed during the fermentation process. In cooking, the weight and volume of the noodles increased, with the change being lowest in noodles based on white rice. White rice-based noodles exhibited significantly higher turbidity in the cooked noodle soup, while other noodle products showed relatively constant turbidity. Most of the products showed a decreased texture, becoming soft with cooking; however, the elasticity of the cooked products increased. Our results suggest that the disadvantages of producing rice noodles can be overcome by the development of fermented brown rice noodles containing a variety of nutritional components. This would potentially develop a market for rice-based manufactured foods that appeal to modern preferences.

Recent Studies on Natural Products that Improve Browning (Browning 촉진에 관여하는 최근 천연물의 동향)

  • Lee, Eunbi;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.1037-1045
    • /
    • 2021
  • The prevalence of obesity is increasing worldwide, and since obesity is associated with dietary factors and sedentary lifestyles, it is a disease that is readily developing in the modern population. Because obesity is accompanied by serious complications such as diabetes and cardiovascular disease, prevention and treatment are important. Currently, drugs such as liraglutide and phentermine are used to treat obesity by suppressing appetite and inducing gastrointestinal motility delay. However, various side effects may occur, including thyroid cancer, cardiovascular problems, and central nervous system disorders. Therefore, to explore an obesity treatment method with relatively few side effects, a method known as "fat browning" was introduced to change white adipose tissue into brown adipose tissue to increase energy consumption. Ongoing studies are attempting to find effective natural substances to safely induce browning. Many natural substances have been identified. The induction of browning by treatment with natural substances generally involves three mechanisms: positive control of browning-inducing factors, inhibition of differentiation into white adipose tissue, and the activation of mechanisms related to browning. In this study, we describe plant extracts with known browning-inducing effects, such as strawberry, black raspberry, cinnamomum cassia, and Ecklonia stolonifera extracts. We also summarize the underlying mechanisms of action identified thus far, including the signaling pathway mediated by these extracts to induce browning. Furthermore, the effects of brown adipose tissue generated through browning on heart disease as an endocrine organ disruptor are discussed.