• 제목/요약/키워드: modeling.

검색결과 31,380건 처리시간 0.052초

초등수학에서 수학적 모델링 적용 필요성에 대한 연구 (A Study of the Need for Applying Mathematical Modeling in the Elementary Schools)

  • 오영열
    • 한국초등수학교육학회지
    • /
    • 제17권3호
    • /
    • pp.483-501
    • /
    • 2013
  • 본 연구는 초등수학에서 수학적 모델링에 대한 적용 필요성에 대해 알아보았으며, 이를 위해 이론적 문헌 분석에 초점을 두었다. 우리나라 수학교육은 학생들의 높은 성취도에도 불구하고 여러 문제점들을 안고 있다. 수학적 모델링은 이러한 문제점들을 해결하는데 중요한 역할을 할 수 있을 것으로 예상되며, 이러한 점에서 본 연구에서는 수학적 모델링이 학교수학의 유의미한 목표 및 방법으로써 연구자들의 관심을 갖게 된 배경과 수학적 모델링의 정의, 그리고 문제해결과 수학적 모델링의 유사점과 차이점을 살펴보았다. 그리고 잘 알려진 세 가지 수학적 모델링의 과정을 제시하고 각 모델링 과정의 특징을 살펴보았다. 또한, 초등수학에서 수학적 모델링이 적용된 국내와 외국의 연구 사례를 제시하였다. 마지막으로 결론 부분에서는 초등수학에서 수학적 모델링 연구의 문제점 및 우리나라에서 초등학교 수학과 교육과정에서 다루어야 할 필요성과 의미에 대해 제시하고, 또한 교사들의 수학적 모델링에 대한 인식에 대해서도 생각해 보았다.

  • PDF

국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향 (Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy)

  • 정세웅;김성진;박형석;서동일
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

프리핸드 스케치 기반 모델링 시스템과 상업용 MCAD의 절차적 인터페이스 (Procedural Interface between Freehand Sketch-based Modeling System and Commercial MCAD)

  • 천상욱;문두환;김병철;한순흥
    • 한국CDE학회논문집
    • /
    • 제13권4호
    • /
    • pp.255-264
    • /
    • 2008
  • Research that reconstructs a 3D model from a freehand 2D sketch has gained attention since 1990s, when data integration in the CAD/CAPP/CAM/CNC chain was an important issue. However, 2D sketches in the conceptual design phase have not been integrated with the downstream CAD/CAPP/CAM/CNC chain. In this paper, we present a method to interface a freehand sketch modeling to commercial CAD systems by mapping a sketch modeling history to the macro parametric history. We use an extended ISO10303-112 standard to represent the modeling history in a gestural modeling system and translate sketch files to neutral macro files. Macro parametric translators are used to translate netural macro files to commercial CAD files.

DISCRETE EVENT SYSTEM SIMULATION APPROACH FOR AN OPERATION ANALYSIS OF A HEADEND PROCESS FACILITY

  • Lee, Hyo-Jik;Kim, Sung-Hyun;Park, Byung-Suk
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.739-746
    • /
    • 2009
  • This paper introduces facility operation modeling and simulation based primarily on a discrete event system modeling scheme. Many modern industrial facilities are so complex that their operational status cannot be estimated by simple calculations. In general, a facility can consist of many processes and transfers of material between processes that may be modeled as a discrete event system. This paper introduces the current status of studies on operation modeling and simulation for typical nuclear facilities, along with some examples. In addition, this paper provides insights about how a discrete event system can be applied to a model for a nuclear facility. A headend facility is chosen for operation modeling and the simulation, and detailed procedure is thoroughly described from modeling to an analysis of discrete event results. These kinds of modeling and simulation are very important because they can contribute to facility design and operation in terms of prediction of system behavior, quantification of facility capacity, bottleneck identification and efficient operation scheduling.

iPSC technology-Powerful hand for disease modeling and therapeutic screen

  • Kim, Changsung
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.256-265
    • /
    • 2015
  • Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]

지식 기반 서비스를 위한 사실 지향 온톨로지 기반의 프로세스 모델링 접근법 (A Fact-oriented Ontological Approach to Process Modeling for Knowledge-based Services)

  • 이정수;김광수;김철한
    • 대한산업공학회지
    • /
    • 제35권1호
    • /
    • pp.40-50
    • /
    • 2009
  • Knowledge-based services are largely dependent upon human-driven works. Therefore, considering human characteristics is required when modeling processes for knowledge-based services. As an emerging technology for Business Process Management, Human Interaction Management and its supportive process management can be an alternative to deal with human-driven processes. However, current HIM does not suggest concrete method for modeling conditions that are essential to realize supportive process management. And the condition modeling of HumanEdj, the only HIM software implemented, reveals the problem of complexity. As a solution, this paper suggests a fact-oriented ontological approach to process modeling. The approach uses human-friendly form of facts for condition modeling.

무전극램프의 출력전력 변화에 따른 새로운 모델링 기법 (New Modeling Method for an Electrodeless Fluorescent Lamp Using the Relation of Lamp Output Power and the Modeling Coefficients of the Lamp)

  • 임병노;장목순;신동석;박종연
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1626-1631
    • /
    • 2007
  • This paper presents a new modeling method using lamp output power and the modeling coefficients of the lamp. The proposed method utilizes the lamp modeling coefficients such as equivalent impedance Z(p), coupling coefficient of the transformer k(p), turns ratio of the transformer n(p), and plasma resistance Rp(p) as a function of lamp output power. The equivalent impedance Z(p) was developed from the equivalent resistance Req(p) and equivalent inductance Leq(p) of the lamp. Simulation and experimental results of the proposed model are presented in order to validate the proposed method. The modeling method can use to design an impedance matching circuit for a Class-D inverter.

플라스틱 자동차 손잡이 구조물의 구조해석에 관한 연구 (A Study on the Structural Analysis for Plastic Door Handle of Automobile)

  • 박서리;심동철;김도;류민영
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.185-190
    • /
    • 2010
  • Application of CAE analyses are wide spread in shaping processes and structural safety verification of plastic products. The importance of CAE analysis and its contributions are getting increase since the processibility and structural safety of product can be predicted. CAE analysis for complex shaped product need a lot of time for modeling and computation compare with simpler one. Therefore careful simulation modeling is required for complex shaped product. Structural analysis for plastic door handle of automobile has been performed and structural safety has been investigated for various load directions and modeling cases. Large stress occurred at the hinge in handle regardless of load direction and modeling case. Consequently hinge is considered structurally very weak among the parts in plastic door handle. It is concluded that simple modeling rather than total modeling with adequate boundary condition equivalent to real situation gives reasonable computational results with saving modeling effort and computation time.

매개변수 곡선을 이용한 음함수 곡면의 모델링 도구 개발 (Development of Modeling Tool for Implicit Surface using Parametric Curve)

  • 박상호;조청운
    • 한국멀티미디어학회논문지
    • /
    • 제19권11호
    • /
    • pp.1900-1908
    • /
    • 2016
  • Recent times have seen the introduction of modeling technologies using implicit surface and marching cubes algorithm in the field of computer graphics. Implicit surface modeling is used to express characters or fluid. This study presents a calculation method for the density of curve skeletal primitives using parametric curve and implements an implicit surface modeling tool by utilizing Maya API. Skeletal primitives can be assembled and utilized in character modeling using the implemented modeling tool. Results could be obtained more effectively compared to existing particle-based methods.

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.