• Title/Summary/Keyword: modeling system

Search Result 10,764, Processing Time 0.034 seconds

An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks (신경회로망을 이용한 폐회로 현가장치의 시스템 모델링)

  • 김일영;정길도;노태수;홍동표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

3-Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System (스핀 코터 시스템의 진동 저감을 위한 3차원 모델링과 민감도 해석)

  • 채호철;류인철;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.209-217
    • /
    • 2003
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system are proposed for the reduction of the vibration. In the respect of modeling, the spin-coater system is considered to be composed of servomotor, spindle, supporting base and so on. Each component of model is combined and derived to 3 dimensional equations. The combined model is verified by experimental values of actual system in the frequency domain. By direct differentiation of the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, rotational stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables are selected from the sensitivity analysis.

A Modeling Method of Equivalent Vibratory System in End Milling (엔드밀링에서 등가 진동계 모델링)

  • 백대균;고태조;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.135-141
    • /
    • 2003
  • For the analysis of machined surface topography and machine-tool chatter, the cutting system is considered to be a single degree of freedom system. This paper presents a modeling method of equivalent vibratory system for precision cutting in end-milling using an impact test, an Autoregressive Moving Average (ARMA) mode] and a bisection method It has been shown that the proposed modeling method provides a good identification of the cutting system. The advantages of the proposed method in comparison to the existing method are that it is very easy and accurate.

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

A Design of Operational Test & Evaluation System for Weapon Systems thru Process-based Modeling (프로세스 기반의 모델링을 통한 무기체계 운용시험평가 시스템 설계)

  • Lee, Beom;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.211-218
    • /
    • 2014
  • The Test and Evaluation (T&E) system became more important due to its advancement and complexity of the weapon system. Time and cost saving T&E related studies are in progress mainly with advanced countries. By utilizing the Modeling and Simulation (M&S) technology recently, we may save time and money. Also, overcome security and safety limitations. There are many M&S based research activities in South Korea but it is way behind of the system that some countries already have developed. i.e.; United States. This area of study requires new way of developing strategies in the T&E system of Korea. This study is to design the Operational T&E system for weapon systems based on modeling of processes. And we modeled the processes of operational performance evaluation through utilizing resources and performance modules of weapon systems and combined it with the simulation engine for 3D visualization. Through this, we propose the Operational T&E system for weapon systems based on modeling of processes that represent operational performances visually.

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

Development of Modeling for Dynamic Response of StLRB System (StLRB의 동적특성 연구를 위한 모델링 개발)

  • 최승호;한경봉;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.855-860
    • /
    • 2002
  • This paper is about seismic performance of the StLRB(S.T.U+PETE+LRB) system, that is among various base isolator. A rational modeling of StLRB system has been presented that used Nllink element. We get theoretical solutions of equation of motion of the system and compared with numerical solutions using a finite element program, Thus, a verified modeling can be applied bridge structure of multi-degree-of-fredoom systems.

  • PDF

Development of Ontology-based Intelligent Mold Design System (온톨로지 기반 지능형 금형 설계 시스템의 개발)

  • Lee, Sang-Hun;Kang, Mu-Jin;Eum, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.167-177
    • /
    • 2011
  • This paper describes an ontology-based intelligent CAD system for injection mold design, which has been developed based on a commercial CAD system called Unigraphics and an ontological framework for representing the implicit design knowledge as well as the explicit based on the extended function-behavior-structure (FBS) engineering design model that includes the constraint. The system also provides various convenient solid modeling capabilities for mold design and the design process modeling capability that facilitates mold redesign process.

An Implementation of Product Data Management System for Design of Ship Propulsion System (선박 추진시스템 설계를 위한 PDM 구현)

  • Suh, Sung-Bu
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.489-494
    • /
    • 2011
  • Present study introduces an implementation of product data management (PDM) that can be applied to the design of ship propulsion system. The PDM system is developed based on both object oriented software development environment and Open Scene Graph (OSG) library while the system architecture is modeled by the unified modeling language (UML). Suggested PDM system also integrates the modeling & simulation components required to estimate the performance of ship propulsion system as the product information is represented based on the 3-dimensional digital mock-up (DMU). Finally, functions of the implemented PDM system that is integrated with the M&S softwares are illustrated in order to suggest a practical guidance for the efficient design of ship propulsion system.

A Modeling of Automated Hull Curved Plates Forming System using SysML (SysML 을 이용한 선체 곡판가공 자동화 시스템 모델링)

  • Noh, Jackyou;Shin, Jong Gye
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • The development of hull curved plate forming automation system in ship production field begins from the need of stakeholders such as enterprise organization, who need the reduction of cost and time and improvement of productivity, and end users who work for this production process. Even though hull curved plate forming automation system has small scale, it is reasonable to consider the system as an interdisciplinary system, because the system includes all of hardware, software, human and information and has a specified objective to be performed. In this paper, introduction of 4 leading Model-Based Systems Engineering (MBSE)methodologies is described and SysML(Systems Modeling Language), which is designed to analyze, specify, design, and verify complex systems, is introduced in order to support those methodologies. Especially, SysML is applied to system modeling of hull curved plate forming automation system and focused on. The structure diagrams and behavior diagrams based on operational context of the automation system are used to make system architecture. The performed application of SysML to the hull curved plate forming automation system shows an example of applying SysML to the development of other autonomous systems in ship production domain.

  • PDF