• Title/Summary/Keyword: modeling instruction

Search Result 78, Processing Time 0.024 seconds

A Comparative Study of Knowledge Integration in the Textbook and Students' Mental Model about the Phases of the Moon (달의 위상 변화에 관한 교과서의 지식 통합 과정 및 학생 정신 모델의 비교 연구)

  • Sung, Na-Hae;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • In this study, we compared textbook knowledge organization with students' mental models to contribute to a more well-designed instruction scheme. The selected science content was the cause of moon phases. We investigated 9 textbooks and 25 third-year middle school students. Patterns and features in participants' mental models were identified through cross inter-rater data analysis by 9 researchers, including in service teachers and experts in science education. According to the results, observing and modeling are the main activities engaged in when dealing with moon phases. The activities consisted of such concepts as: lunar revolution, the sun's parallel rays, the illuminated half of moon, and the relative positions of the sun, moon, and earth. Each concept involved inquiry skills such as: creating and manipulating models, utilizing the relationship between time and space, and communicating. However, the most important skills which are required for authentic scientific inquiry, namely controlling variables and formulating hypotheses, were missing. We categorized students' mental models into three types: scientific models, mixed models, and alternative models. The knowledge structure of each of the models was also discussed in this paper. Consequently, it was found that, typically, students were not given enough opportunities to strengthen the connection among ideas.

XML Web Services for Learning ContentsBased on a Pedagogical Design Model (교수법적 설계 모델링에 기반한 학습 컨텐츠의 XML 웹 서비스 구축)

  • Shin, Haeng-Ja;Park, Kyung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1131-1144
    • /
    • 2004
  • In this paper, we investigate a problem with an e-learning system for e-business environments and introduce the solving method of the problem. To be more accurate, existing Web-hosted and ASP (Application Service Provider)-oriented service model is difficult to cooperate and integrate among the different kinds of systems. So we have produced sharable and reusable learning object, they have extracted a principle from pedagogical designs for units of reuse. We call LIO (Learning Item Object). This modeling makes use of a constructing for XML Web Services. So to speak, units of reuse from pedagogical designs are test tutorial, resource, case example, simulation, problem, test, discovery and discussion and then map introduction, fact, try, quiz, test, link-more, tell-more LIO learning object. These typed LIOs are stored in metadata along with the information for a content location. Each one of LIOs is designed with components and exposed in an interface for XML Web services. These services are module applications, which are used a standard SOAP (Simple Object Access Protocol) and locate any computer over Internet and publish, find and bind to services. This guarantees the interoperation and integration of the different kinds of systems. As a result, the problem of e-learning systems for e-business environments was resolved and then the power of understanding about learning objects based on pedagogical design was increased for learner and instruction designers. And organizations of education hope for particular decreased costs in constructing e-learning systems.

  • PDF

Web Learning Systems Development based on Product Line (프로덕트 라인 기반의 웹 학습 시스템 개발)

  • Kim Haeng-Hon;Kim Su-Youn
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.589-600
    • /
    • 2005
  • Application developers need effective reuseable methodology to meet rapidly changes and variety of users requirements. Product Line and CBD(Component Based Development) offer the great benefits on quality and productivity for developing the software that is mainly associate with reusable architectures and components in a specific domain and rapidly changing environments. Product line can dynamically focus on the commonality and variety feature model among the products. The product line uses the feature modeling for discovering, analyzing, and mediating interactions between products. Reusable architectures include many variety plans and mechanisms. In case of those architecture are use in product version for a long time, It is very important in architecture product line context for product line design phase. Application developer need to identify the proper location of architecture changing for variety expression. It is lack of specific variety managements to design the product line architecture until nowdays. In this paper, we define various variety types to identify the proper location of architecture changing for variety expression and to design the reusable architecture. We also propose architecture variety on feature model and describe variety expression on component relations. We implemented the web learning system based on the methodology. We finally describe how these methodology may assist in increasing the efficiency, reusability, productivity and quality to develop an application. In the future, we are going to apply the methodology into various domain and suggest international and domestic's standardization.

The Validation of the Systems Thinking Assessment Tool for Measuring the Higher-order Thinking Ability of Vietnamese High School Students

  • Hyonyong Lee;Nguyen Thi Thuy;Hyundong Lee;Jaedon Jeon;Byung-Yeol Park
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.318-330
    • /
    • 2023
  • This study aimed to verify the validity of a measurement tool for Vietnamese high school students' systems thinking abilities. Two quantitative assessment tools, the Systems Thinking Measuring Instrument (Lee et al., 2013) and the Systems Thinking Scale (Dolansky et al., 2020), were used to measure students' systems thinking after translation into Vietnamese. As a result, it was revealed that Cronbach-α for each tool (i.e., STMI and STS) was .917 and .950, respectively, indicating high reliability for both. To validate the construct validity of the translated questionnaire, exploratory factor analysis was performed using SPSS 26.0, and confirmatory factor analysis was performed using AMOS 21.0. For concurrent validity, correlation analysis using structural equation modeling was performed to validate the translated questionnaire. Exploratory factor analysis revealed that 10 items from the STMI and 12 items from the STS loaded on the intended factors and appropriate factor loading values were obtained. For confirmatory factor analysis, a structural equation model organized with 10 items from the STMI and 12 items from the STS was used. The result of this showed that the convergent validity values of the model were all appropriate, and the model fit indices were analyzed to be χ2/df of 1.892, CFI of .928, TLI of .919, SRMR of .047, and RMSEA of .063, indicating that the model consisting of the 22 items of the two questionnaires was appropriate. Analysis of the concurrent validity of the two tools indicated a high correlation coefficient (.903) and high correlation (.571-.846) among the subfactors. In conclusion, both the STMI and STS are valid quantitative measures of systems thinking, and it can be inferred that the systems thinking of Vietnamese high-school students can be quantitatively measured using the 22 items identified in our analysis. Using the tool validated in this study with other tools (e.g., qualitative assessment) can help accurately measure Vietnamese high school students' systems thinking abilities. Furthermore, these tools can be used to collect evidence and support effective education in ODA projects and volunteer programs.

A study on the factors of elementary school teachers' intentions to use AI math learning system: Focusing on the case of TocToc-Math (초등교사들의 인공지능 활용 수학수업 지원시스템 사용 의도에 영향을 미치는 요인 연구: <똑똑! 수학탐험대> 사례를 중심으로)

  • Kyeong-Hwa Lee;Sheunghyun Ye;Byungjoo Tak;Jong Hyeon Choi;Taekwon Son;Jihyun Ock
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.335-350
    • /
    • 2024
  • This study explored the factors that influence elementary school teachers' intention to use an artificial intelligence (AI) math learning system and analyzed the interactions and relationships among these factors. Based on the technology acceptance model, perceived usefulness for math learning, perceived ease of use of AI, and attitude toward using AI were analyzed as the main variables. Data collected from a survey of 215 elementary school teachers was used to analyze the relationships between the variables using structural equation modeling. The results of the study showed that perceived usefulness for math learning and perceived ease of use of AI significantly influenced teachers' positive attitudes toward AI math learning systems, and positive attitudes significantly influenced their intention to use AI. These results suggest that it is important to positively change teachers' perceptions of the effectiveness of using AI technology in mathematics instruction and their attitudes toward AI technology in order to effectively adopt and utilize AI-based mathematics education tools in the future.

Comparison with the 6th and 7th Science Curricular for Inquiry Skill Elements in the Elementary and Secondary School (초.중.고등학교 탐구 기능 요소에 대한 6차와 7차 과학 교육 과정의 비교)

  • Ha, So-Hyun;Kwack, Dae-Oh;Sung, Min-Wung
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.1
    • /
    • pp.102-113
    • /
    • 2001
  • In order to compare with the 6th and 7th science curricular for the inquiry skill elements in the elementary and secondary school, we divided skill domains into five classes which were process skill, step skill for inquiry instruction, inquiry activity skill, manipulative skill and breeding-farming skill. And then we investigated the kinds and frequencies for the inquiry skill elements of the 6th and 7th curricular in the elementary and secondary school. The results were as follows: 1. The total kinds of inquiry skill element showed 17 kinds in the 6th curriculum and 23 kinds in the 7th. Therefore, the 7th curriculum was higher 1.4 times than the 6th curriculum in the kinds of skill elements. 2. The total frequencies for the inquiry skill elements of the 6th curriculum were 408 and those of the 7th were 729. Therefore, the 7th curriculum was about 1.8 times as many as the 6th. 3. In the kinds of inquiry skill elements according to the school levels, the course of the elementary school showed 14 kinds in the 6th curriculum and 18 kinds in the 7th. The course of middle school showed 7 kinds in 6th and 16 kinds in 7th. The integrated science course of high school was 10 kinds in the 6th and 10 kinds in the 7th. The skill elements in four science curricular of the high school course showed total 11 kinds in the 6th and 21 kinds in the 7th. And then the kinds of inquiry skill elements of the 7th curriculum in the middle and high school course showed about 2 times as many as the 6th curriculum. In the school level, the increase of skill elements showed the highest in the middle school course, and then in the high school course. 4. The total skill elements from the elementary school to the high school in the 6th science curriculum showed 17 kinds and in the order from the highest to the lowest rates, such as experimenting 20%, observing 15%, interpreting and analyzing data 13%, investigating 9%, measuring 7%, drawing a conclusion and assessment 7%, discussion 6%, communicating 5%, classifying 4%, recognizing problems and formulating hypothesis 4%, predicting 3%, designing and carrying out an experiment 3%, collecting and treating data 2%, manipulating skill 1%, modeling 0.5%, breeding and farming 0.3% and inferring 0.2%. 5. The total skill elements from the elementary school to the high school in the 7th curriculum appeared 23 kinds and in the order from the highest to the lowest rates, such as drawing a conclusion and assessment 31%, investigating 14%, collecting and treating data 8%, observing 7%, experimenting 7%, recognizing problems and formulating hypothesis 6%, interpreting and analyzing data 4%, measuring 3%, discussion 3%, manipulating skill 3%, modeling 3%, classifying 2%, project 2%, educational visits 1%, controlling variables 1%, predicting 1%, inferring 1%, operational definition 1%, communicating 1%, designing and carrying out an experiment 0.3%, breeding and farming 0.3%, applicating a number 0.2% and relating with time and space 0.2%. In the conclusion, the 7th curriculum was added 6 kinds of skill elements to the 6th curriculum, such as operational definition, applicating a number, relating with time and space, controlling variables, educational visits and project.

  • PDF

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

Interpreting Bounded Rationality in Business and Industrial Marketing Contexts: Executive Training Case Studies (집행관배훈안례연구(阐述工商业背景下的有限合理性):집행관배훈안례연구(执行官培训案例研究))

  • Woodside, Arch G.;Lai, Wen-Hsiang;Kim, Kyung-Hoon;Jung, Deuk-Keyo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.3
    • /
    • pp.49-61
    • /
    • 2009
  • This article provides training exercises for executives into interpreting subroutine maps of executives' thinking in processing business and industrial marketing problems and opportunities. This study builds on premises that Schank proposes about learning and teaching including (1) learning occurs by experiencing and the best instruction offers learners opportunities to distill their knowledge and skills from interactive stories in the form of goal.based scenarios, team projects, and understanding stories from experts. Also, (2) telling does not lead to learning because learning requires action-training environments should emphasize active engagement with stories, cases, and projects. Each training case study includes executive exposure to decision system analysis (DSA). The training case requires the executive to write a "Briefing Report" of a DSA map. Instructions to the executive trainee in writing the briefing report include coverage in the briefing report of (1) details of the essence of the DSA map and (2) a statement of warnings and opportunities that the executive map reader interprets within the DSA map. The length maximum for a briefing report is 500 words-an arbitrary rule that works well in executive training programs. Following this introduction, section two of the article briefly summarizes relevant literature on how humans think within contexts in response to problems and opportunities. Section three illustrates the creation and interpreting of DSA maps using a training exercise in pricing a chemical product to different OEM (original equipment manufacturer) customers. Section four presents a training exercise in pricing decisions by a petroleum manufacturing firm. Section five presents a training exercise in marketing strategies by an office furniture distributer along with buying strategies by business customers. Each of the three training exercises is based on research into information processing and decision making of executives operating in marketing contexts. Section six concludes the article with suggestions for use of this training case and for developing additional training cases for honing executives' decision-making skills. Todd and Gigerenzer propose that humans use simple heuristics because they enable adaptive behavior by exploiting the structure of information in natural decision environments. "Simplicity is a virtue, rather than a curse". Bounded rationality theorists emphasize the centrality of Simon's proposition, "Human rational behavior is shaped by a scissors whose blades are the structure of the task environments and the computational capabilities of the actor". Gigerenzer's view is relevant to Simon's environmental blade and to the environmental structures in the three cases in this article, "The term environment, here, does not refer to a description of the total physical and biological environment, but only to that part important to an organism, given its needs and goals." The present article directs attention to research that combines reports on the structure of task environments with the use of adaptive toolbox heuristics of actors. The DSA mapping approach here concerns the match between strategy and an environment-the development and understanding of ecological rationality theory. Aspiration adaptation theory is central to this approach. Aspiration adaptation theory models decision making as a multi-goal problem without aggregation of the goals into a complete preference order over all decision alternatives. The three case studies in this article permit the learner to apply propositions in aspiration level rules in reaching a decision. Aspiration adaptation takes the form of a sequence of adjustment steps. An adjustment step shifts the current aspiration level to a neighboring point on an aspiration grid by a change in only one goal variable. An upward adjustment step is an increase and a downward adjustment step is a decrease of a goal variable. Creating and using aspiration adaptation levels is integral to bounded rationality theory. The present article increases understanding and expertise of both aspiration adaptation and bounded rationality theories by providing learner experiences and practice in using propositions in both theories. Practice in ranking CTSs and writing TOP gists from DSA maps serves to clarify and deepen Selten's view, "Clearly, aspiration adaptation must enter the picture as an integrated part of the search for a solution." The body of "direct research" by Mintzberg, Gladwin's ethnographic decision tree modeling, and Huff's work on mapping strategic thought are suggestions on where to look for research that considers both the structure of the environment and the computational capabilities of the actors making decisions in these environments. Such research on bounded rationality permits both further development of theory in how and why decisions are made in real life and the development of learning exercises in the use of heuristics occurring in natural environments. The exercises in the present article encourage learning skills and principles of using fast and frugal heuristics in contexts of their intended use. The exercises respond to Schank's wisdom, "In a deep sense, education isn't about knowledge or getting students to know what has happened. It is about getting them to feel what has happened. This is not easy to do. Education, as it is in schools today, is emotionless. This is a huge problem." The three cases and accompanying set of exercise questions adhere to Schank's view, "Processes are best taught by actually engaging in them, which can often mean, for mental processing, active discussion."

  • PDF