• Title/Summary/Keyword: modeling error

Search Result 1,632, Processing Time 0.029 seconds

Phase Field Modeling of Graphitization in Ductile Cast Iron by Strip Casting(I);Modeling of Phases with Negligible Solubility (스트립캐스팅한 구상흑연주철 박판의 흑연화 과정에 대한 phase-field 모델링 (I);고용도가 없는 상의 모델링)

  • Kim, Sung-Gyun;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.129-140
    • /
    • 2000
  • This study aims at the phase-field modeling of the phase transformation in graphitization of the cast iron. As the first step, we constructed a phase-field model including the phases with negligible solubility. Under the dilute regular solution approximation, a simplified version of the phase-field model was obtained, which can be used for the phase transformation related with the stoichiometric phases. The results from the numerical calculation of the phase-field model was in good agreement with the exact analytic solution. The compositional shift due to Gibbs-Thomson effect can be reproduced within 0.5% error in the numerical calculation. The interface velocity, whereas, in numerical calculation of phase-field model appeared to be 15% larger than that from the analytic solution. This error is due to the shift of the interface position in phase-field model from the position with ${\phi}=0.5$.

  • PDF

An Analysis of Human Factor in Marine Accidents - Collision Accidents - (해양사고의 인적요인 분석에 관한 연구 - 선박충돌사고를 중심으로 -)

  • Yang Won-Jae;Kwon Suk-jae;Keum Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.7-11
    • /
    • 2004
  • Maritime safety and marine environmental protection are the most important topic in marine society. But, so many marine accidents rave been occurred with the development of marine transportation industry. On the other side, ship is being operated under a highly dynamic environment and many factors are related with ship's collision Nowadays, the increasing tendency to the human errors of ship's collision is remarkable, and the investigation of the human errors has been heavily concentrated. This study analysed on the human errors of ship's collision related to the negligence of lookout and classified basic error type using GEMS(Generic Error Modeling System) dynamic model.

  • PDF

PREDICTION MEAN SQUARED ERROR OF THE POISSON INAR(1) PROCESS WITH ESTIMATED PARAMETERS

  • Kim Hee-Young;Park You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.37-47
    • /
    • 2006
  • Recently, as a result of the growing interest in modeling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of these models is the integer-valued autoregressive (INAR) models. However, when modeling with integer-valued autoregressive processes, the distributional properties of forecasts have been not yet discovered due to the difficulty in handling the Steutal Van Ham thinning operator 'o' (Steutal and van Ham, 1979). In this study, we derive the mean squared error of h-step-ahead prediction from a Poisson INAR(1) process, reflecting the effect of the variability of parameter estimates in the prediction mean squared error.

Fuzzy Learning Control for Multivariable Unstable System (불안정한 다변수 시스템에 대한 퍼지 학습제어)

  • 임윤규;정병묵;소범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.808-813
    • /
    • 1999
  • A fuzzy learning method to control an unstable and multivariable system is presented in this paper, Because the multivariable system has generally a coupling effect between the inputs and outputs, it is difficult to find its modeling equation or parameters. If the system is unstable, initial condition rules are needed to make it stable because learning is nearly impossible. Therefore, this learning method uses the initial rules and introduces a cost function composed of the actual error and error-rate of each output without the modeling equation. To minimize the cost function, we experimentally got the Jacobian matrix in the operating point of the system. From the Jacobian matrix, we can find the direction of the convergence in the learning, and the optimal control rules are finally acquired when the fuzzy rules are updated by changing the portion of the errors and error rates.

  • PDF

Speed Control of DC Motors Using Inverse Dynamics (역동력학을 이용한 DC 모터의 속도제어)

  • 김병만;손영득;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.97-102
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and the PI controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system in characterized by a nonlinear equation with coulomb friction. The PI controller regulates the error between the set-point and the system output which may be caused by modeling error, variations of parameters and disturbances. The output which may be caused by modeling error, variations of parameters and disturbances. The parameters of the model and the PI controller are adjusted offlinely by a genetic algorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller.

  • PDF

An Analysis on Relations between Design Errors Detected during BIM-based Design Validation and the Impacts Using Logistic Regression (로지스틱 회귀분석을 이용한 BIM 설계 검토에 의하여 발견된 설계 오류와 그 영향도간의 관계 분석)

  • Won, Jongsung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.264-265
    • /
    • 2017
  • This paper aims to analyze relations between design errors prevented by building information modeling (BIM)-based design validation and their impacts in order to identify critical consideration factors for successfully implementing BIM-based design validation in the architecture, engineering, and construction (AEC) projects. More than 800 design errors detected by BIM-based design validation in two BIM-based projects in South Korea are categorized according to its causes and work types. The relations between causes and work types of design errors and project delay, cost overrun, low quality, and rework generation that can be caused by the errors are analyzed through conducting logistic regression. Characteristics of each design error are analyzed by conducting face-to-face interviews with practitioners in the two BIM-based projects. As the results, the impacts of design error causes on predicting project delay, cost overrun, low quality, and rework generation were the highest.

  • PDF

A Study on the Dynamic Analysis on the Cross Directional Register in Roll-to-roll e-Printing Systems (롤투롤 인쇄전자에서의 횡방향 레지스터 동적 특성 모델링)

  • Kang, Hyun-Kyoo;Ahn, Jin-Hyun;Lee, Chang-Woo;Shin, Kee-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2010
  • For the adaption of roll-to-roll printing method to the printed electronics, it is mandatory to increase the resolution of register errors. Therefore it is desired to derive the mathematical modeling of register error or to develop controller design. The cross direction register error was derived considering both lateral motion of moving web and transverse position of printing roll. The mathematical modeling was validated and the relationship between the lateral motion and register error was analyzed by numerical simulations in various operating conditions using multi-layer direct gravure printing machine. The results could be used for a design of the CD register in the multi-layer printing and the lateral motion caused by translation.

GNSS Airborne Multipath Error Modeling Under UAV Platform and Operating Environment

  • Kim, Minchan;Kim, Kiwan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In the case of an unmanned aerial vehicle (UAV) equipped with a GNSS sensor, a boundary line where the vehicle can actually exist can be calculated using a navigation error model, and safe navigation (e.g., precise landing and collision prevention) can be supported based on this boundary line. Therefore, for the safe operation of UAV, a model for the position error of UAV needs to be established in advance. In this study, the multipath error of a GNSS sensor installed at UAV was modeled through a flight test, and this was analyzed and compared with the error model of an existing manned aircraft. The flight test was conducted based on a scenario in which UAV performs hovering at an altitude of 40 m, and it was found that the multipath error value was well bound by the error model of an existing manned aircraft. This result indicates that the error model of an existing manned aircraft can be used in operation environments similar to the scenario for the flight test. Also, in this study, a scenario for the operation of multiple UAVs was considered, and the correlation between the multipath errors of the UAVs was analyzed. The result of the analysis showed that the correlation between the multipath errors of the UAVs was not large, indicating that the multipath errors of the UAVs cannot be canceled out.

Transmission Error Analysis of Helical Gears in Consideration of Shaft and Bearing Deformation (축과 베어링 변형을 고려한 헬리컬 기어의 전달오차 해석)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2194-2200
    • /
    • 2002
  • Transmission error is highly related to gear noise. In order to predict the helical gear noise, transmission error analysis is needed. Up to now, the studies for the transmission error were conducted by the modeling of helical gears only. However, since helical gears are supported by the shaft and bearing, transmission error has the effects of the elements. In this study, the procedure to consider the shaft deformation with bearing stiffness for the transmission error analysis is proposed. To do so, the relationship between gear error and shaft deformation is analytically derived. Shaft deformation with bearing stiffness is analyzed by FEM. It is measured in the experimental test rig by the non-contact displacement sensors. Using the tooth error from tooth modification and the shaft deformation, the effects of shaft on the loaded transmission error are investigated.

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • Lee, Jin-Hyeon;Lee, Jae-Ha;Yang, Seong-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF