• 제목/요약/키워드: modeling assumptions

검색결과 185건 처리시간 0.028초

사회인지이론과 의학교육: 어떻게 사회적 상호작용을 통해 학습이 일어나는가 (Social Cognitive Theory and Medical Education: How Social Interactions Can Inform Learning)

  • 김혜원
    • 의학교육논단
    • /
    • 제22권2호
    • /
    • pp.67-76
    • /
    • 2020
  • The structures and processes of medical education have changed little since the publication of Flexner's report, which stressed the scientific orientation of medical education and the curricular structure of 2 years of formal knowledge education and 2 years of clinical experience. However, the previous perspectives on medical education are facing challenges, and these call for new pedagogy and theories on which to base medical education practice. Considering that social dimensions of learning have been emphasized in practice, perspectives that integrate these aspects are needed. Among the various learning theories, social cognitive theory refers to the theoretical framework which contends that learning occurs within interactions with others and environments. From a social cognitive standpoint, learning through observation is a critical component in human functioning. Indeed, observational learning has particular significance in medical education in that it provides the context for which the importance and meaning of role models can be understood. In addition, as theoretical constructs such as self-efficacy and outcome expectations allow us to establish an effective learning environment, exploring the concepts of the theory could be beneficial to medical education practice. In this context, the present review article aims to provide a glimpse of the fundamental assumptions and theoretical concepts of social cognitive theory and discusses the implications the theory has on teaching and learning. Further, a review of previous studies could help explain how the theory has informed medical education practice. Finally, the author will conclude with the implications and limitations of applying social cognitive theory in medical education.

다변량 다수준 이항자료에 대한 일반화선형혼합모형 (Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data)

  • 임화경;송석헌;송주원;전수영
    • 응용통계연구
    • /
    • 제21권6호
    • /
    • pp.923-932
    • /
    • 2008
  • 우리는 자명하지 않은 상관 구조를 갖는 복잡한 다변량 자료에 직면하는 경우가 있다. 예를 들어 군집 구조 자료의 경우 생략된 변수들이 한 개 이상의 관측값에 동시적으로 영향을 줄 수 있기 때문에 결과들 간에 상관 구조를 모형화하는 것은 추정량의 효율성과 정확한 표준오차의 계산 등의 타당한 추론을 위해서 중요하다 관측값들 간에 종속성을 두는 표준 방법으로는 관측 값들이 관찰되지 않은 어떤 변수를 공유한다고 가정하는 것인데, 이러한 가정에 대해 본 연구에서는 다수준 모형을 고려한 상관된 임의효과 모형을 적합시켰다. 추정은 준모수적 접근방법으로 임의계수 분포에 대한 모수적 가정 없이 유한혼합 EM-알고리즘을 통하여 수행되었다.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • 제11권5호
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

TIME-DEPENDENT FRACTURE OF ARTICULAR CARTILAGE: PART 1 - THEORY & VALIDATION

  • 문무성
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.27-33
    • /
    • 1995
  • A time-dependent large deformation fracture theory is developed for application to soft biological tissues. The theory uses the quasilinear viscoelastic theory of Fung, and particularizes it to constitutive assumptions on polyvinyl-chloride (PVC) (Part I) and cartilage (Part II). This constitutive theory is used in a general viscoelastic theory by Christensen and Naghdi and an energy balance to develop an expression for the fracture toughness of the materials. Experimental methods are developed for measuring the required constitutive parameters and fracture data for the materials. Elastic stress and reduced relaxation functions were determined using tensile and shear tests at high loading rates with rise times of 25-30 msec, and test times of 150 sec. The developed method was validated, using an engineering material, PVC to separate the error in the testing method from the inherent variation of the biological tissues. It was found that the the proposed constitutive modeling can predict the nonlinear stress-strain and the time-dependent behavior of the material. As an approximation method, a pseudo-elastic theory using the J-integral concept, assuming that the material is a time-independent large deformation elastic material, was also developed and compared with the time-dependent fracture theory. For PVC. the predicted fracture toughness is $1.2{\pm}0.41$ and $1.5{\pm}0.23\;kN/m$ for the time-dependent theory and the pseudo-elastic theory, respectively. The methods should be of value in quantifying fracture properties of soft biological tissues. In Part II, an application of the developed method to a biological soft tissue was made by using bovine humeral articular cartilage.

  • PDF

강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구 (Free and Ambient Vibration of Steel-Deck Truss Bridge)

  • 정성엽;오순택
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.60-68
    • /
    • 2012
  • 본 연구에서는 미국 뉴욕주 로체스터시 소재 강합성 데크 트러스 보도교를 대상으로 사용성을 평가하기 위한 상시진동 실험(ambient vibration test)을 수행하였고 이를 해석적 방법에 의한 결과와 비교하였다. 교량전체에 대한 상시진동실험은 수치모델 작성 시 도입되는 여러 가정들에 대한 타당성을 평가하는데 있어서 유용한 방법이며, 교량의 고유진동수나 모드형상과 같이 구조 동력학에서 중요한 구조적인 변수를 결정하는데 있어 중요한 역할을 한다. 본 연구에서는 교량의 수직방향 및 수평방향 진동 특성과 변위를 측정하기 위하여 실제 교량에서 보행자에 의해 발생하는 진동을 입력하중으로 사용하였다. 교량 구조물에 대한 모델링을 위하여 3차원 유한 요소법을 사용하여 해석을 수행하였으며, 이를 통하여 현장실험 결과와의 유효성을 입증하였다.

전기비저항 탐사자료의 3차원 역산 (Three-dimensional Inversion of Resistivity Data)

  • 이명종;김정호;조성준;정승환;송윤호
    • 지구물리와물리탐사
    • /
    • 제2권4호
    • /
    • pp.191-201
    • /
    • 1999
  • 현재까지 전기비저항 탐사자료의 해석은 대부분 지하구조가 1차원 또는 2차원으로 가정하는데 근간을 두고 있다. 그러나, 국내와 같이 지질구조가 복잡하며 지형의 기복이 심한 경우, 이와 같은 가정을 사용은 전기비저항 탐사자료의 해석에 오류를 야기할 가능성이 높다. 본 연구에서는 3차원적으로 복잡하게 변화하는 지하구조 및 지형의 기복에 의한 지형효과를 정확히 계산할 수 있는 유한요소법에 의한 3차원 전기비저항 모델링 알고리듬을 근간으로 하는 역산 알고리듬을 개발하였다. 이 알고리듬은 ACB(Active Constraint Balancing)법을 채용함으로써 역산의 분해능 향상을 기하였다. 간단한 3차원 지하구조 및 지형기복에 대한 수치모형 실험결과 지표의 불규칙한 기복을 포함하여 역산을 수행함으로써 정확한 지하구조 영상을 획득할 수 있음을 보였으며, 국내의 교량건설 예정부지에서 수행된 격자망을 이룬 전기비저항 탐사자료에 대한 3차원 역산 결과 매우 신뢰도 높은 지하구조에 대한 영상을 도출할 수 있었다.

  • PDF

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

새로운 태양전지 모델의 파라미터 추출법 (A Novel Parameter Extraction Method for the Solar Cell Model)

  • 김욱;김상현;이종학;최우진
    • 전력전자학회논문지
    • /
    • 제14권5호
    • /
    • pp.372-378
    • /
    • 2009
  • 태양광 발전시스템의 설치 용량이 증가함에 따라 시스템 효율을 개선하기 위한 연구가 활발히 진행되고 있다. 고성능 시스템의 설계 및 시험을 위해서는 태양전지의 모델링을 바탕으로 태양전지의 물리적 특성에 관해 정확히 이해하는 것이 중요하다. 그러나 태양전지의 모델은 다수의 파라미터가 얽힌 비선형 형태이며, 모델식의 파라미터 값을 얻기 위한 기존의 방식에서는 오차를 동반하는 실제와 다른 가정을 전제로 하므로 결과적으로 추출된 파라미터의 정확도가 저하되게 되는 단점이 있다. 따라서 본 논문에서는 제조사가 표준상태에서 측정하여 공개하는 태양전지의 I-V 커브로부터 다이오드의 이상계수와 역포화 전류를 구하고 이로부터 저항 성분이 없는 이상적인 태양전지의 I-V 커브를 도출한 뒤, 실측된 I-V 커브와 차이를 최소화하는 직·병렬 저항값을 추출하는 새로운 방식을 제안한다. 기존의 방식과 제안된 방식의 모델링을 통하여 얻은 파라미터를 이용해 구현한 I-V 커브와 실측 I-V 커브와의 상관관계를 최소자승법을 통해 계산함으로써 제안된 방법의 유용함을 증명하였다.