• Title/Summary/Keyword: model-free distance

Search Result 125, Processing Time 0.028 seconds

Revenue Change by Peak Hour Fare Imposition for Senior Free Ride : Using Seoul Metropolitan Subway Smart Card Data (노인무임승차 첨두시 요금부과에 따른 수입금 변화 : 수도권 스마트카드자료를 이용하여)

  • Seongil Shin;Jinhak Lee;Hasik Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2023
  • This study derives quantitative data on how much the fiscal deficit of subway operation agencies can be reduced in the process of charging free rides for the elderly in metropolitan subways during peak periods. In smart card data, every trip of elderly is recorded except fares. Therefore, it is required to establish a methodology for estimating the fares of elderly passengers and distributing them to subway opertation agencies as income. This study builds a simultaneous dynamic traffic allocation model that reflects the assumption that elderly selects a minimum time route based on the departure time. The travel route of the elderly is estimated, and the distance-proportional fare charged to the elderly is calculated based on this, and the fare is distributed by reflecting the connected railway revenue allocation principle of the metropolitan subway operating agencies. As a result of conducting a case study for before and after COVID-19 in 2019 and 2020, it is analyzed that Seoul Metro's annual free loss of 360 billion won could be reduced 6~8% at the morning peak (07:00-08:59), and 13~16% at the morning and afternoon peak (18:00-19:59).

Hydrodynamic Calculation of Two-stage Weis-Fogh Type Water Turbine (2단 직렬 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.709-717
    • /
    • 2017
  • In this study, a model of two-stage Weis-Fogh type water turbine model is proposed, the hydrodynamic characteristics of this water turbine model are calculated by the advanced vortex method. The basic conditions and the motion of each wing are the same as that of the single-stage model previously proposed by the same author. The two wings (NACA0010 airfoils) and both channel walls are approximated by source and vortex panels, and free vortices are introduced from the body surfaces. The distance between the front wing axis and the rear wing axis, and the phase difference between the motion of the two wings, which is in phase and out of phase are set as the calculation parameters. For each case, the unsteady flow fields, pressure fields, force coefficients, and efficiency of the two wings are calculated, and the hydrodynamic characteristics of the proposed water turbine model are discussed.

A Propose on the Propagation Prediction Model for Service in the Sea of CDMA Mobile Communication (CDMA 이동통신의 해상 서비스를 위한 전파예측모델 제안)

  • Kim, Young-Gon;Park, Chang-Kyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.106-112
    • /
    • 2001
  • Unfortunately, the area without economical efficiency, especially the far distance sea, is much lower than that of a urban area-built-up area. It should be promoted the equivalent level to a urban area in the light of future-oriented universal service. Actually, Because propagation environment of mobile communication in the sea is greatly different from that for inland focused on built-up area, a propagation prediction model in the sea should be distinguished from inland-based one. Accordingly, the purpose of this study is to suggest the propagation prediction model for the sea service as a method to minimize unnecessary facilities investment and maintenance caused by additional or new building of a base station. If mobile phone service for far distance sea is provided by expanding limited communication zone of narrow band CDMA mobile communication whose spread band FA is 1.2288MHz. Suggested propagation prediction model includes five parameters to minimize facilities investment of a base station and maximize channel capacity: equivalent line of sight, chip delay by PN code, antenna altitude, power of base station and gain of antennas. Finally, suggested propagation prediction model is simulated and, the results are examined for its utility by comparing with loss of free space.

  • PDF

Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions (대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링)

  • Na, Jeongkyun;Kim, Byungho;Cha, Hyesun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.274-280
    • /
    • 2020
  • In this paper, the effect of atmospheric turbulence is numerically modeled and analyzed via a phase-screen model, in regard to long-range optical energy transfer using coherent beam combination. The coherent-beam-combination system consists of three channel beams pointing at a target at a distance of 1-2 km. The phase and propagation direction of each channel beam are assumed to be corrected in an appropriate manner, and the atmospheric turbulence that occurs while the beam propagates through free space is quantified with a phase-screen model. The phase screen is statistically generated and constructed within the range of fluctuations of the structure constant Cn2 from 10-15 to 10-13 [m-2/3]. Particularly, in this discussion the shape, distortion, and combining efficiency of the 3-channel combined beam are calculated at the target plane by varying the structure constant used in the phase-screen model, and the effect of atmospheric turbulence on beam-combination efficiency is analyzed. Analysis with this numerical model verifies that when coherent beam combination is used for long-range optical energy transfer, the received power at the target can be at least three times the power obtainable by incoherent beam combination, even for maximal atmospheric fluctuation within the given range. This numerical model is expected to be effective for analyzing the effects of various types of atmospheric-turbulence conditions and beam-combination methods when simulating long-range optical energy transfer.

Development of a Model to Evaluate RF Exposure Level from Cellular Phone using a Neural Network (신경망을 이용한 휴대전화에 의한 RF 노출 평가 모델의 개발)

  • Kim Soo-Chan;Nam Ki-Chang;Ahn Seon-Hui;Kim Deok-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.969-976
    • /
    • 2004
  • The wide and growing use of cellular phones has raised the question about the possible health risks associated with radio-frequency electromagnetic fields. It would be helpful for phone users to blow the exposure levels during cellular phone use. But it is very difficult to recognize the amount of exposure, because measuring accurate level of RF is a difficult matter. In this study, we developed a model to estimate the exposure level and the individual risk of exposure by utilizing the available informations that we can get. We used such parameters as usage time a day, total using period, distance between cellular phone and head, slope of cellular phone, hands-free usage, antenna pulled out or not SAR(Specific Absorption Rate) of cellular phone, and flip or folder type. We proposed a model presenting individual risk of RF exposure from level 0 to 10 by using a neural network.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

AUGMENTING WFIRST MICROLENSING WITH A GROUND-BASED TELESCOPE NETWORK

  • ZHU, WEI;GOULD, ANDREW
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.93-107
    • /
    • 2016
  • Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M ≳ M. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

Electromagnetic Interactions between a Cellular Phone and the Human Body and Synthesis of a Bone-Equivalent Material (휴대폰 전자파와 인체의 상호 영향 및 뼈 유사 물질 합성 연구)

  • 윤용섭;김인광;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.277-290
    • /
    • 1999
  • A simulation using the finite-difference time-domain method to analyze the electromagnetic interactions between a cellular phone and the human body was conducted, and a synthesis of a bone-equivalent material to make a human head phantom was performed. A test model of the cellular phone was fabricated to measure its reflection coefficient and radiation pattern in the free space. Various effects of the human body on the characteristics of the phone, such as input impedance, reflection coefficient, radiation pattern, and radiation efficiency are analyzed as the distance between the head and the phone antenna varies. When the phone was operated close to the head, the resonant frequency of the antenna decreased by up to 12%. With the output power of 0.6W, as long as the distance was larger than 30mm, the 1-g averaged peak SAR was below the ANSI/IEEE safety guideline, 1.6 W/kg. To synthesize the bone-equivalent material, an epoxy with hardener and a graphite powder were used as basis ingredients, and a small amount of a conducting epoxy was added to control the conductivity of the material. A material having a relative permittivity of 18.04 and a conductivity of 0.347, which are close to those of the bone at 850 MHz, was synthesized.

  • PDF

Homology Modeling and Molecular Docking Study of Translationally Controlled Tumor Protein and Artemisinin

  • Chae, Jin-Sun;Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2006
  • Translationally controlled tumor protein (TCTP), also known as histamine releasing factor (HRF), is found abundantly in different eukaryotic cell types. The sequence homology of TCTP between different species is very high, belonging to the MSS4/DSS4 superfamily of proteins. TCTP is involved in both cell growth and human late allergy reaction, as well as having a calcium binding property; however, its primary biological functions remain to be clearly elucidated. In regard to many possible functions, the TCTP of Plasmodium falciparum (Pf) is known to bind with an antimalarial agent, artemisinin, which is activated by heme. It is assumed that the endoperoxide-bridge of artemisinin is opened up by heme to form a free radical, which then eventually alkylates, probably to the Cys14 of PfTCTP. Study of the docking of artemisinin with heme, and subsequently with PfTCTP, was carried out to verify the above hypothesis on the basis of structural interactions. The three dimensional (3D) structure of PfTCTP was built by homology modeling, using the NMR structure of the TCTP of Schizosaccharomyces pombe as a template. The quality of the model was examined based on its secondary structure and biological function, as well as with the use of structure evaluating programs. The interactions between artemisinin, heme and PfTCTP were then studied using the docking program, FlexiDock. The center of the peroxide bond of artemisinin and the Fe of heme were docked within a short distance of $2.6{\AA}$, implying the strong possibility of an interaction between the two molecules, as proposed. When the activated form of artemisinin was docked on the PfTCTP, the C4-radical of the drug faced towards the sulfur of Cys14 within a distance of $2.48{\AA}$, again suggesting the possibility of alkylation having occurred. These results confirm the proposed mechanism of the antimalarial effect of artemisinin, which will provide a reliable method for establishing the mechanism of its biological activity using a molecular modeling study.

Face Deformation Technique for Efficient Virtual Aesthetic Surgery Models (효과적인 얼굴 가상성형 모델을 위한 얼굴 변형 기법)

  • Park Hyun;Moon Young Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.63-72
    • /
    • 2005
  • In this paper, we propose a deformation technique based on Radial Basis Function (RBF) and a blending technique combining the deformed facial component with the original face for a Virtual Aesthetic Surgery (VAS) system. The deformation technique needs the smoothness and the accuracy to deform the fluid facial components and also needs the locality not to affect or distort the rest of the facial components besides the deformation region. To satisfy these deformation characteristics, The VAS System computes the degree of deformation of lattice cells using RBF based on a Free-Form Deformation (FFD) model. The deformation error is compensated by the coefficients of mapping function, which is recursively solved by the Singular Value Decomposition (SVD) technique using SSE (Sum of Squared Error) between the deformed control points and target control points on base curves. The deformed facial component is blended with an original face using a blending ratio that is computed by the Euclidean distance transform. An experimental result shows that the proposed deformation and blending techniques are very efficient in terms of accuracy and distortion.