Browse > Article
http://dx.doi.org/10.5303/JKAS.2016.49.3.93

AUGMENTING WFIRST MICROLENSING WITH A GROUND-BASED TELESCOPE NETWORK  

ZHU, WEI (Department of Astronomy, Ohio State University)
GOULD, ANDREW (Department of Astronomy, Ohio State University)
Publication Information
Journal of The Korean Astronomical Society / v.49, no.3, 2016 , pp. 93-107 More about this Journal
Abstract
Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M ≳ M. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.
Keywords
astrometry; gravitational microlensing; planets; stars; fundamental parameters (mass);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Calchi Novati, S., Gould, A., Yee, J. C., et al. 2015, Spitzer IRAC Photometry for Time Series in Crowded Fields, ApJ, 814, 92   DOI
2 Hardy, S. J., & Walker, M. A. 1995, Parallax Effects in Binary Microlensing Events, MNRAS, 276, L79
3 Henderson, C. B., Gaudi, B. S., Han, C., et al. 2014, Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network, ApJ, 794, 52   DOI
4 Henderson, C. B. 2015, Prospects for Characterizing Host Stars of the Planetary System Detections Predicted for the Korean Microlensing Telescope Network, ApJ, 800, 58   DOI
5 Henderson, C. B., Penny, M., Street, R. A., et al. 2015, Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-Based Microlensing Survey, arXiv:1512.09142
6 Holtzman, J. A., Watson, A. M., Baum, W. A., et al. 1998, The Luminosity Function and Initial Mass Function in the Galactic Bulge, AJ, 115, 1946   DOI
7 Hotz, D. E., & Wald, R. M. 1996, Photon Statistics Limits for Earth-based Parallax Measurements of MACHO Events, ApJ, 471, 64   DOI
8 Gonzalez, O. A., Rejkuba, M., Zoccali, M., et al. 2012, Reddening and Metallicity Maps of the Milky Way Bulge from VVV and 2MASS. II. The Complete High Resolution Extinction Map and Implications for Galactic Bulge Studies, A&A, 543, A13   DOI
9 Ghosh, H., DePoy, D. L., Gal-Yam, A., et al. 2004, Potential Direct Single-Star Mass Measurement, ApJ, 615, 450   DOI
10 Gould, A., Miralda-Escude, J., & Bahcall, J. N. 1994, Microlensing Events: Thin Disk, Thick Disk, or Halo?, ApJL, 423, L105   DOI
11 Gould, A. 1992, Extending the MACHO Search to about 10 exp 6 Solar Masses, ApJ, 392, 442   DOI
12 Gould, A. 1994, Proper Motions of MACHOs, ApJL, 421, L71   DOI
13 Gould, A. 1996, Theory of Pixel Lensing, ApJ, 470, 201   DOI
14 Gould, A. 1994, MACHO Velocities from Satellite-Based Parallaxes, ApJL, 421, L75   DOI
15 Gould, A. 1995a, Analytic Error Estimates, ApJ, 440, 510   DOI
16 Gould, A. 1995b, MACHO Parallaxes from a Single Satellite, ApJL, 441, L21   DOI
17 Gould, A. 1997, Extreme Microlensing toward the Galactic Bulge, ApJ, 480, 188   DOI
18 Gould, A. 2000, Measuring the Remnant Mass Function of the Galactic Bulge, ApJ, 535, 928   DOI
19 Gould, A. 2013, Geosynchronous Microlens Parallaxes, ApJL, 763, L35   DOI
20 Alcock, C., Allsman, R. A., Alves, D. R., et al. 2001, Direct Detection of a Microlens in the Milky Way, Nature, 414, 617   DOI
21 An, J. H., & Gould, A. 2001, Microlens Mass Measurement Using Triple Peak Events, ApJ, 563, 111   DOI
22 Batista, V., Beaulieu, J.-P., Bennett, D. P., et al. 2015, Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection, ApJ, 808, 170   DOI
23 Boutreux, T., & Gould, A. 1996, Monte Carlo Simulations of MACHO Parallaxes from a Satellite, ApJ, 462, 705   DOI
24 Penny, M. T., Kerins, E., Rattenbury, N., et al. 2013, ExELS: an Exoplanet Legacy Science Proposal for the ESA Euclid Mission - I. Cold Exoplanets, MNRAS, 434, 2   DOI
25 Sumi, T., Kamiya, K., & Bennett, D. P. 2011, Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing, Nature, 473, 349   DOI
26 Yee, J. C. 2013, WFIRST Planet Masses from Microlens Parallax, ApJL, 770, 31   DOI
27 Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNet: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, accepted
28 Nataf, D. M., Gould, A., Fouqué, P., et al. 2013, Reddening and Extinction toward the Galactic Bulge from OGLE-Telescope Assets WFIRST-AFTA 2015 Report, arXiv:1503.03757
29 Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens, ApJ, 603, 139   DOI
30 Zhu, W., Penny, M., Mao, S., Gould, A., & Gendron, R. 2014, Predictions for Microlensing Planetary Events from Core Accretion Theory, ApJ, 788, 73   DOI
31 Refsdal, S. 1966, On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect, MNRAS, 134, 315   DOI
32 Poindexter, S., Afonso, C., Bennett, D. P., et al. 2005, Systematic Analysis of 22 Microlensing Parallax Candidates, ApJ, 633, 914   DOI
33 Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, A Survey of Stellar Families: Multiplicity of Solar-Type Stars, ApJS, 190, 1   DOI
34 Spergel, D., Gehrels, N., Baltay, C., et al. 2015, Wide-Field Infrared Survey Telescope-Astrophysics Focused
35 Shvartzvald, Y., Udalski, A., Gould, A., et al. 2015, Spitzer Microlens Measurement of a Massive Remnant in a Well-Separated Binary, ApJ, 814, 111   DOI
36 Smith, M., Mao, S., & Paczyński, B. 2003, Acceleration and Parallax Effects in Gravitational Microlensing, MNRAS, 339, 925   DOI
37 Gould, A. 2014, WFIRST Ultra-Precise Astrometry I: Kuiper Belt Objects, JKAS, 47, 279
38 Zhu, W., Udalski, A., & Gould, A. 2015, Spitzer as Microlens Parallax Satellite: Mass and Distance Measurements of Binary Lens System OGLE-2014-BLG-1050L, ApJ, 805, 8   DOI
39 Zhu, W., Calchi Novati, S., Gould, A., et al. 2016, Mass Measurements of Isolated Objects from Space-Based Microlensing, ApJ, in press (arXiv:1510.02097) III: The Inner Milky Way’s RV ∼ 2.5 Extinction Curve, ApJ, 769, 88
40 Gould, A. 2014, Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions, JKAS, 47, 215
41 Gould, A., Huber, D., Penny, M., & Stello, D. 2015, WFIRST Ultra-Precise Astrometry II: Asteroseismology, JKAS, 48, 93
42 Dong, S., Udalski, A., Gould, A., et al. 2007, First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001, ApJ, 664, 862   DOI
43 Bennett, D. P., Anderson, J., & Gaudi, B. S. 2007, Characterization of Gravitational Microlensing Planetary Host Stars, ApJ, 660, 781   DOI
44 Calchi Novati, S., & Scarpetta, G. 2015, Microlensing Parallax for Observers in Heliocentric Motion, arXiv:1512.09141
45 Bennett, D. P., Bhattacharya, A., Anderson, J., et al. 2015, Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169, ApJ, 808, 169   DOI
46 Gaudi, B. S., & Gould, A. 1997, Satellite Parallaxes of Lensing Events toward the Galactic Bulge, ApJ, 477, 152   DOI
47 Bessell, M. S., & Brett, J. M. 1988, JHKLM Photometry - Standard Systems, Passbands, and Intrinsic Colors, PASP, 100, 1134   DOI
48 Boyajian, T. S., van Belle, G., & von Braun, K. 2014, Stellar Diameters and Temperatures. IV. Predicting Stellar Angular Diameters, AJ, 147, 47   DOI
49 Gould, A., & Yee, J. C. 2014 Microlens Masses from Astrometry and Parallax in Space-based Surveys: From Planets to Black Holes, ApJ, 784, 64   DOI
50 Gould, A., & Yee, J. C. 2013, Microlens Terrestrial Parallax Mass Measurements: A Rare Probe of Isolated Brown Dwarfs and Free-Floating Planets, ApJ, 764, 107   DOI
51 Han, C., & Gould, A. 2003, Stellar Contribution to the Galactic Bulge Microlensing Optical Depth, ApJ, 592, 172   DOI
52 Gould, A., Gaudi, B. S., & Han, C. 2003, Resolving the Microlens Mass Degeneracy for Earth-Mass Planets, ApJL, 591, L53   DOI
53 Graff, D. S., & Gould, A. 2002, Microlens Parallaxes of Binary Lenses Measured from a Satellite, ApJ, 560, 253   DOI
54 Han, C., & Gould, A. 1995, The Mass Spectrum of MACHOs from Parallax Measurements, ApJ, 449, 521   DOI
55 Han, C., Chung, S.-J., Kim, D., et al. 2004, Gravitational Microlensing: A Tool for Detecting and Characterizing Free-Floating Planets, ApJ, 604, 372   DOI