• Title/Summary/Keyword: model-based systems engineering

Search Result 5,469, Processing Time 0.038 seconds

KANO-TOPSIS Model for AI Based New Product Development: Focusing on the Case of Developing Voice Assistant System for Vehicles (KANO-TOPSIS 모델을 이용한 지능형 신제품 개발: 차량용 음성비서 시스템 개발 사례)

  • Yang, Sungmin;Tak, Junhyuk;Kwon, Donghwan;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.287-310
    • /
    • 2022
  • Companies' interest in developing AI-based intelligent new products is increasing. Recently, the main concern of companies is to innovate customer experience and create new values by developing new products through the effective use of Artificial intelligence technology. However, due to the nature of products based on radical technologies such as artificial intelligence, intelligent products differ from existing products and development methods, so it is clear that there is a limitation to applying the existing development methodology as it is. This study proposes a new research method based on KANO-TOPSIS for the successful development of AI-based intelligent new products by using car voice assistants as an example. Using the KANO model, select and evaluate functions that customers think are necessary for new products, and use the TOPSIS method to derives priorities by finding the importance of functions that customers need. For the analysis, major categories such as vehicle condition check and function control elements, driving-related elements, characteristics of voice assistant itself, infotainment elements, and daily life support elements were selected and customer demand attributes were subdivided. As a result of the analysis, high recognition accuracy should be considered as a top priority in the development of car voice assistants. Infotainment elements that provide customized content based on driver's biometric information and usage habits showed lower priorities than expected, while functions related to driver safety such as vehicle condition notification, driving assistance, and security, also showed as the functions that should be developed preferentially. This study is meaningful in that it presented a new product development methodology suitable for the characteristics of AI-based intelligent new products with innovative characteristics through an excellent model combining KANO and TOPSIS.

A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service (전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구)

  • Hyunjeong Gong;Eugene Hwang;Sunghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.361-381
    • /
    • 2023
  • Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.

Direction-Embedded Branch Prediction based on the Analysis of Neural Network (신경망의 분석을 통한 방향 정보를 내포하는 분기 예측 기법)

  • Kwak Jong Wook;Kim Ju-Hwan;Jhon Chu Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.9-26
    • /
    • 2005
  • In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.

FEM-based Seismic Reliability Analysis of Real Structural Systems (실제 구조계의 유한요소법에 기초한 지진 신뢰성해석)

  • Huh Jung-Won;Haldar Achintya
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.171-185
    • /
    • 2006
  • A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

Determination of Optimal Hourly Water Intake Amount for H Arisu Purification Center using Linear Programming (선형계획법을 이용한 H 아리수 정수 센터 최적 취수량 결정)

  • Lee, Chulsoo;Lee, Kangwon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1051-1064
    • /
    • 2015
  • Currently, the H purification plant determines the hourly water intake amount based on operator experience and skill. Therefore, inevitably, there are deviations among operators. While meeting time-varying demand and maintaining the proper water level in the clean water reservoir, the methodology for minimizing electricity cost, when dealing with different electricity rate time zones, is a very complicated problem, which is beyond an operator's capability. To solve this problem, a linear programming (LP) model is proposed, which can determine the optimal hourly water intake amount for minimizing the daily electricity cost. It is shown that an inaccurate estimate for the hourly water usage in the demand areas causes the water level constraint to be violated, which is the weak point of the proposed LP method. However, several examples with real-field data show that we can practically and safely solve this problem with safety margins. It is also shown that the safety margin method still works effectively whether the estimate is accurate or not. The operators need not attend the site at all times under the proposed LP method, and we can additionally expect reductions in labor costs.

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

WPS-based Satellite Image Processing onWeb Framework and Cloud Computing Environment (클라우드 컴퓨팅과 웹 프레임워크 환경에서 WPS 기반 위성영상 정보처리)

  • Yoon, Gooseon;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.561-570
    • /
    • 2015
  • Till now, applications of many kinds of satellite images have been accentuated in the datacentric scientific studies, researches regarding system development and concerned technologies for them are on the un-matured stage. Especially, satellite image processing requires large volume data handling and specific analysis functionalities, so that practical necessity of base study for system development is emphasized on. In the view of information system, various edged trends such as web standards, cloud computing, or web framework are utilized owing to their application benefits proven and business needs. Considered these aspects, a testing implementation was carried out using OpenStack cloud computing environment and e-government framework. As for the processing functions, WPS in GeoServer, as one of OGC web standards, was applied to perform interoperable data processing scheme between two or more remote servers. Working with the server implemented, client-side was also developed using several open sources such as HTML 5, jQuery, and OpenLayers. If it is that completed further experiments onsite applications with actual multi-data sets and extension of on-demand functionalities with the result of this study, it will be referred as an example case model for complicated and complex system design and implementation which needs cloud computing, geo-spatial web standards and web framework.

The e-Business Agent Prototyping System with Component Based Development Architecture (CBD 아키텍처 기반 e-비즈니스 에이전트 프로토타이핑 시스템)

  • Shin, Ho-Jun;Kim, Haeng-Kon
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.133-142
    • /
    • 2004
  • The next generation of web applications will need to be larger, more complex, and flexible Agent-oriented systems have great potential for these e-commerce applications. Agents can dynamically discover and compose e-services and mediate interactions. Development of software agents with CBD (Component Based Development) has proved to be successful in increasing speed to market of development Projects, lowering the development cost and providing better qualify. In this thesis, we propose a systemic development process for software agents using component and UML (Unified Modeling Language). We suggest a etA (e-business Agent) CBD reference architecture for layer the related components through identification and classification of general agent and e-business agent. We also propose the ebA-CBD process that is a guideline to consider the best features of existing agent oriented software engineering methodologies, while grounding agent-oriented concepts in the same underlying semantic framework used by UML. We first developed the agent components specification and modeled it with Goal, Role, Interaction, and Architecture Model. Based on this, we developed e-CPIMAS (e-Commerce Product Information Mailing Agent System) as a case study that provides the product information's mailing service according to proposed process formality. We finally describe how these concepts may assist in increasing the efficiency reusability, productivity and quality to develop the business application and e-business agent.

A Study on Data Preprocessing for the Activity-Travel Simulator: A Case of FEATHERS Seoul (활동기반 시뮬레이터 입력 자료의 전처리 방안에 대한 연구: FEATHERS Seoul을 사례로)

  • Cho, Sungjin;Hwang, Jeong Hwan;Bellemans, Tom;Kochan, Bruno;Lee, Won Do;Choi, Keechoo;Joh, Chang-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.531-543
    • /
    • 2014
  • Research on activity-based travel demand forecasting and activity-travel simulator has received an international attention for the last two decades. Ways to develop the activity-based simulator may be manifold. It is obvious that importing an existing simulator that has been proven internationally likely reduces the development cost and the risk of failure. By definition of the activity-based approach, however, the details of an activity-based simulator inevitably relies on particular social, economic and cultural characteristics of the society where the simulator is developed. When importing such a simulator from overseas, the researcher should be aware of the importance of tuning the system for the society to which the imported system is applied. There are many potential works on this, including for example the tuning of data structure that is likely different form of the original system. The authors are yet aware of certain research on those. The current paper aims to report the result of transforming the input data for applying the existing activity-travel simulator to Seoul. The paper first introduces FEATHERS that was developed in Belgium having Albatross which is the core of system. FEATHERS Seoul that is under development and modified version of the original FEATHERS is briefly described and the related problems are discussed. The paper then explored to resolve and to alleviate such problems.

Improved SIM Algorithm for Contents-based Image Retrieval (내용 기반 이미지 검색을 위한 개선된 SIM 방법)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-59
    • /
    • 2009
  • Contents-based image retrieval methods are in general more objective and effective than text-based image retrieval algorithms since they use color and texture in search and avoid annotating all images for search. SIM(Self-organizing Image browsing Map) is one of contents-based image retrieval algorithms that uses only browsable mapping results obtained by SOM(Self Organizing Map). However, SOM may have an error in selecting the right BMU in learning phase if there are similar nodes with distorted color information due to the intensity of light or objects' movements in the image. Such images may be mapped into other grouping nodes thus the search rate could be decreased by this effect. In this paper, we propose an improved SIM that uses HSV color model in extracting image features with color quantization. In order to avoid unexpected learning error mentioned above, our SOM consists of two layers. In learning phase, SOM layer 1 has the color feature vectors as input. After learning SOM Layer 1, the connection weights of this layer become the input of SOM Layer 2 and re-learning occurs. With this multi-layered SOM learning, we can avoid mapping errors among similar nodes of different color information. In search, we put the query image vector into SOM layer 2 and select nodes of SOM layer 1 that connects with chosen BMU of SOM layer 2. In experiment, we verified that the proposed SIM was better than the original SIM and avoid mapping error effectively.

  • PDF