• 제목/요약/키워드: model-based predictive control

검색결과 313건 처리시간 0.03초

이동구간 예측제어 기법을 이용한 적응 제어기의 전기로 적용 (Application of adaptive controller using receding-horizon predictive control strategy to the electric furnace)

  • 김진환;허욱열
    • 제어로봇시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.60-66
    • /
    • 1996
  • Model Based Predictive Control(MBPC) has been widely used in predictive control since 80's. GPC[1] which is the superset of many MBPC strategies a popular method, but GPC has some weakness, such as insufficient stability analysis, non-applicability to internally unstable systems. However, CRHPC[2] proposed in 1991 overcomes the above limitations. So we chose RHPC based on CRHPC for electric furnace control. An electric furnace which has nonlinear properties and large time delay is difficult to control by linear controller because it needs nearly perfect modelling and optimal gain in case of PID. As a result, those controls are very time-consuming. In this paper, we applied RHPC with equality constraint to electric furnace. The reults of experiments also include the case of RHPC with monotonic weighting improving the transient response and including unmodelled dynamics. So, This paper proved the practical aspect of RHPC for real processes.

  • PDF

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

공진형 직류 링크단을 이용한 유도전동기의 예측형 전류 제어 (A Novel Predictive Current Control of Induction Motor Using Resonant DC Link Inverter)

  • 오인환;문건우;김성권;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.567-570
    • /
    • 1996
  • A predictive current control technique for an induction motor employing a resonant DC link inverter is proposed to overcome the disadvantage of the current regulated delta modulation(CRDM) which was employed to control the resonant DC link inverter. The discrete model of an induction motor and estimation of back EMF are investigated and a novel predictive current control technique is newly developed based on this discrete model and estimated back EMF. Using the proposed control technique, the minimized current ripple with reduced offset can be obtained. The usefulness of the proposed technique is verified through the computer simulation.

  • PDF

Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots

  • Lee, Seung-Mok;Kim, Hanguen;Lee, Serin;Myung, Hyun
    • Advances in robotics research
    • /
    • 제1권1호
    • /
    • pp.41-59
    • /
    • 2014
  • This paper deals with the problem of steering a group of mobile robots along a reference path while maintaining a desired geometric formation. To solve this problem, the overall formation is decomposed into numerous geometric patterns composed of pairs of robots, and the state of the geometric patterns is defined. A control algorithm for the problem is proposed based on the Nash equilibrium strategies incorporating receding horizon control (RHC), also known as model predictive control (MPC). Each robot calculates a control input over a finite prediction horizon and transmits this control input to its neighbor. Considering the motion of the other robots in the prediction horizon, each robot calculates the optimal control strategy to achieve its goals: tracking a reference path and maintaining a desired formation. The performance of the proposed algorithm is validated using numerical simulations.

Development of Optimal Control System for Air Separation Unit

  • Ji, Dae-Hyun;Lee, Sang-Moon;Kim, Sang-Un;Kim, Sun-Jang;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.524-529
    • /
    • 2004
  • In this paper, We described the method which developed the optimal control system for air separation unit to change production rates frequently and rapidly. Control models of the process were developed from actual plant data using subspace identification method which is developed by many researchers in resent years. The model consist of a series connection of linear dynamic block and static nonlinear block (Wiener model). The model is controlled by model based predictive controller. In MPC the input is calculated by on-line optimization of a performance index based on predictions by the model, subject to possible constraints. To calculate the optimal the performance index, conditions are expressed by LMI(Linear Matrix Inequalities).In order to access at the Bailey DCS system, we applied the OPC server and developed the Client program. The OPC sever is a device which can access Bailey DCS system.The Client program is developed based on the Matlab language for easy calculation,data simulation and data logging. Using this program, we can apply the optimal input to the DCS system at real time.

  • PDF

확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크 (A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control)

  • 한다성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2021
  • 본 논문에서는 확률적 모델예측제어(model predictive control) 기법을 이용하여 예제 동작 데이터가 주어지면 물리 기반 시뮬레이션 환경에서 그 동작을 모방할 수 있는 캐릭터 동작 제어기를 빠르게 학습할 수 있는 간편한 지도 학습(supervised learning) 프레임워크를 제안한다. 제안된 프레임워크는 크게 학습 데이터 생성과 오프라인 학습의 두 컴포넌트로 구성된다. 첫번째 컴포넌트는 예제 동작 데이터가 주어지면 확률적 모델예측제어를 통해 그 동작 데이터를 추적하기 위한 최적 제어기를 캐릭터의 현재 상태로부터 시작하여 가까운 미래 상태까지의 시간 윈도우에 대해 주기적으로 업데이트하면서 그 최적 제어기를 통해 캐릭터의 동작을 확률적으로 제어한다. 이러한 주기적인 최적 제어기의 업데이트와 확률적 제어는 주어진 예제 동작 데이터를 모방하는 동안 캐릭터가 가질 수 있는 다양한 상태들을 효과적으로 탐색하게 하여 지도 학습에 유용한 학습 데이터를 수집할 수 있게 해준다. 이렇게 학습 데이터가 수집되면, 오프라인 학습 컴포넌트에서는 그 수집된 데이터를 정규화 시켜서 데이터에 내제된 크기와 단위의 차이를 조정하고 지도 학습을 통해 제어기를 위한 간단한 구조의 인공 신경망을 학습시킨다. 걷기 동작과 달리기 동작에 대한 실험은 본 논문에서 제안한 학습 프레임워크가 물리 기반 캐릭터 동작 제어기를 빠르고 효과적으로 생성할 수 있음을 보여준다.

신경회로망을 이용한 이산치 혼돈 시스템의 모델 예측제어 (Model Predictive Control of Discrete-Time Chaotic Systems Using Neural Network)

  • 김세민;최윤호;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.933-935
    • /
    • 1999
  • In this paper, we present model predictive control scheme based on neural network to control discrete-time chaotic systems. We use a feedforward neural network as nonlinear prediction model. The training algorithm used is an adaptive backpropagation algorithm that tunes the connection weights. And control signal is obtained by using gradient descent (GD), some kind of LMS method. We identify that the system identification results through model prediction control have a great effect on control performance. Finally, simulation results show that the proposed control algorithm performs much better than the conventional controller.

  • PDF

모델예측제어를 이용한 에어컨 시스템의 실내온도 제어 (Indoor Temperature Control of an Air-Conditioning System Using Model Predictive Control)

  • 조항철;변경석;송재복;장효환;최영돈
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.467-474
    • /
    • 2001
  • The mathematical model of a air-conditioning system is generally very complex and difficult to apply to controller design. In this paper, simple models applicable to the controller design are obtained by modeling the air-conditioning system by single-input single-output between compressor speed and indoor temperature, and by multi-input single-output between compressor speed, indoor fan speed and indoor temperature. Using these empirical models, model predictive control(MPC) technique was implemented for indoor temperature control of the air-conditioning system. It has been shown from various experiments that the indoor temperature control based on the MPC scheme yields reasonably good tracking performance with smooth changes in plant inputs. this multi-input multi-output MPC approach can be extended to multi air- conditioning systems where the conventional PID control scheme is very difficult to apply.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.