• Title/Summary/Keyword: model-based method

Search Result 19,606, Processing Time 0.048 seconds

Machine Condition Prognostics Based on Grey Model and Survival Probability

  • Tangkuman, Stenly;Yang, Bo-Suk;Kim, Seon-Jin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.143-151
    • /
    • 2012
  • Predicting the future condition of machine and assessing the remaining useful life are the center of prognostics. This paper contributes a new prognostic method based on grey model and survival probability. The first step of the method is building a normal condition model then determining the error indicator. In the second step, the survival probability value is obtained based on the error indicator. Finally, grey model coupled with one-step-ahead forecasting technique are employed in the last step. This work has developed a modified grey model in order to improve the accuracy of prediction. For evaluating the proposed method, real trending data of low methane compressor acquired from condition monitoring routine were employed.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Load rating of box girder bridges based on rapid testing using moving loads

  • Hong Zhou;Dong-Hui Yang;Ting-Hua Yi;Hong-Nan Li
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.371-382
    • /
    • 2023
  • Box girder bridges are now widely used in bridge construction, and it is necessary to perform load rating regularly to evaluate the load capacity of box girder bridges. Load testing is a common measure for load rating. However, the bridge must be loaded by many trucks under different loading conditions, which is time-consuming and laborious. To solve this problem, this paper proposes a load rating method for box girder bridges based on rapid moving loads testing. The method includes three steps. First, the quasi-influence factors of the bridge are obtained by crossing the bridge with rapidly moving loads, and the structural modal parameters are simultaneously obtained from the dynamic data to supplement. Second, an objective function is constructed, consisting of the quasi-influence factors at several measurement points and structural modal parameters. The finite element model for load rating is then updated based on the Rosenbrock method. Third, on this basis, a load rating method is proposed using the updated model. The load rating method proposed in this paper can considerably reduce the time duration of traditional static load testing and effectively utilize the dynamic and static properties of box girder bridges to obtain an accurate finite element model. The load capacity obtained based on the updated model can avoid the inconsistency of the evaluation results for the different structural members using the adjustment factors specified in codes.

Semiparametric and Nonparametric Modeling for Matched Studies

  • Kim, In-Young;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • This study describes a new graphical method for assessing and characterizing effect modification by a matching covariate in matched case-control studies. This method to understand effect modification is based on a semiparametric model using a varying coefficient model. The method allows for nonparametric relationships between effect modification and other covariates, or can be useful in suggesting parametric models. This method can be applied to examining effect modification by any ordered categorical or continuous covariates for which cases have been matched with controls. The method applies to effect modification when causality might be reasonably assumed. An example from veterinary medicine is used to demonstrate our approach. The simulation results show that this method, when based on linear, quadratic and nonparametric effect modification, can be more powerful than both a parametric multiplicative model fit and a fully nonparametric generalized additive model fit.

  • PDF

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF

Improved Region-Based TCTL Model Checking of Time Petri Nets

  • Esmaili, Mohammad Esmail;Entezari-Maleki, Reza;Movaghar, Ali
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • The most important challenge in the region-based abstraction method as an approach to compute the state space of time Petri Nets (TPNs) for model checking is that the method results in a huge number of regions, causing a state explosion problem. Thus, region-based abstraction methods are not appropriate for use in developing practical tools. To address this limitation, this paper applies a modification to the basic region abstraction method to be used specially for computing the state space of TPN models, so that the number of regions becomes smaller than that of the situations in which the current methods are applied. The proposed approach is based on the special features of TPN that helps us to construct suitable and small region graphs that preserve the time properties of TPN. To achieve this, we use TPN-TCTL as a timed extension of CTL for specifying a subset of properties in TPN models. Then, for model checking TPN-TCTL properties on TPN models, CTL model checking is used on TPN models by translating TPN-TCTL to the equivalent CTL. Finally, we compare our proposed method with the current region-based abstraction methods proposed for TPN models in terms of the size of the resulting region graph.

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

Development of Daily Peak Power Demand Forecasting Algorithm Considering of Characteristics of Day of Week (요일 특성을 고려한 일별 최대 전력 수요예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.307-311
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method considering of characteristics of day of week. The proposed method is composed of liner model based on AR model and nonlinear model based on ELM to resolve the limitation of a single model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

DNN-based acoustic modeling for speech recognition of native and foreign speakers (원어민 및 외국인 화자의 음성인식을 위한 심층 신경망 기반 음향모델링)

  • Kang, Byung Ok;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • This paper proposes a new method to train Deep Neural Network (DNN)-based acoustic models for speech recognition of native and foreign speakers. The proposed method consists of determining multi-set state clusters with various acoustic properties, training a DNN-based acoustic model, and recognizing speech based on the model. In the proposed method, hidden nodes of DNN are shared, but output nodes are separated to accommodate different acoustic properties for native and foreign speech. In an English speech recognition task for speakers of Korean and English respectively, the proposed method is shown to slightly improve recognition accuracy compared to the conventional multi-condition training method.

Subdivision by Edge Selection based on Curvature (정점 변화율에 기반한 에지 선택적 세분화)

  • Park, Jong-Hui;Kim, Tae-Yun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.863-874
    • /
    • 1999
  • 세분화란 초기 원형 모델의 삼각형 메쉬를 여러 개의 작은 메쉬로 변환하는 기법으로, 간략화 된 모델을 다시 원상태로 표현하기 위해 사용된다. 기존의 보간에 의한 세분화는 전체 모델의 에지에 일률적으로 세분화를 적용하기 때문에, 효과가 적은 부분까지도 세분화가 수행하게 되어 효율이 떨어진다. 본 논문에서는 정점 변화율을 기반으로 에지를 선택하여 세분화를 수행한다. 따라서 원형 메쉬를 변환하여 세분화된 메쉬를 생성할 때, 모델의 각 부분들은 정점 변화율의 차이에 의해 서로 다른 세분화 정도를 가지게 된다. 이 과정을 통해 원형 모델의 곡률 특성이 반영된 세분화를 수행할 수 있게 되고, 전체 모델의 세분화 정도를 조정하는 것도 가능해진다. Abstract The subdivision is a mesh transformation, which makes an original triangle mesh to subdivided meshes. This method is used for recovering original model from simplified model. The existing subdivision based on interpolation is inefficient, because it is targeted for whole edges of mesh model. Therefore, this method applies to non-effective parts. In this paper the subdivision is executed by edge selection based on curvature. When original model is transformed to subdivided model by proposed method, the parts of model has different subdivision degrees by means of the averages of vertex curvature.Proposed method makes it enable subdivision, which deploy characteristics of curvatures of original model and adjusting a degree of subdivision in whole model.