• Title/Summary/Keyword: model systems

Search Result 23,824, Processing Time 0.057 seconds

Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus (사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.171-196
    • /
    • 2018
  • With the development of the web, two-way communication and evaluation became possible and marketing paradigms shifted. In order to meet the needs of consumers, web design trends are continuously responding to consumer feedback. As the web becomes more and more important, both academics and businesses are studying consumer emotions and satisfaction on the web. However, some consumer characteristics are not well considered. Demographic characteristics such as age and sex have been studied extensively, but few studies consider psychological characteristics such as regulatory focus (i.e., emotional regulation). In this study, we analyze the effect of web style on consumer emotion. Many studies analyze the relationship between the web and regulatory focus, but most concentrate on the purpose of web use, particularly motivation and information search, rather than on web style and design. The web communicates with users through visual elements. Because the human brain is influenced by all five senses, both design factors and emotional responses are important in the web environment. Therefore, in this study, we examine the relationship between consumer emotion and satisfaction and web style and design. Previous studies have considered the effects of web layout, structure, and color on emotions. In this study, however, we excluded these web components, in contrast to earlier studies, and analyzed the relationship between consumer satisfaction and emotional indexes of web-style only. To perform this analysis, we collected consumer surveys presenting 40 web style themes to 204 consumers. Each consumer evaluated four themes. The emotional adjectives evaluated by consumers were composed of 18 contrast pairs, and the upper emotional indexes were extracted through factor analysis. The emotional indexes were 'softness,' 'modernity,' 'clearness,' and 'jam.' Hypotheses were established based on the assumption that emotional indexes have different effects on consumer satisfaction. After the analysis, hypotheses 1, 2, and 3 were accepted and hypothesis 4 was rejected. While hypothesis 4 was rejected, its effect on consumer satisfaction was negative, not positive. This means that emotional indexes such as 'softness,' 'modernity,' and 'clearness' have a positive effect on consumer satisfaction. In other words, consumers prefer emotions that are soft, emotional, natural, rounded, dynamic, modern, elaborate, unique, bright, pure, and clear. 'Jam' has a negative effect on consumer satisfaction. It means, consumer prefer the emotion which is empty, plain, and simple. Regulatory focus shows differences in motivation and propensity in various domains. It is important to consider organizational behavior and decision making according to the regulatory focus tendency, and it affects not only political, cultural, ethical judgments and behavior but also broad psychological problems. Regulatory focus also differs from emotional response. Promotion focus responds more strongly to positive emotional responses. On the other hand, prevention focus has a strong response to negative emotions. Web style is a type of service, and consumer satisfaction is affected not only by cognitive evaluation but also by emotion. This emotional response depends on whether the consumer will benefit or harm himself. Therefore, it is necessary to confirm the difference of the consumer's emotional response according to the regulatory focus which is one of the characteristics and viewpoint of the consumers about the web style. After MMR analysis result, hypothesis 5.3 was accepted, and hypothesis 5.4 was rejected. But hypothesis 5.4 supported in the opposite direction to the hypothesis. After validation, we confirmed the mechanism of emotional response according to the tendency of regulatory focus. Using the results, we developed the structure of web-style recommendation system and recommend methods through regulatory focus. We classified the regulatory focus group in to three categories that promotion, grey, prevention. Then, we suggest web-style recommend method along the group. If we further develop this study, we expect that the existing regulatory focus theory can be extended not only to the motivational part but also to the emotional behavioral response according to the regulatory focus tendency. Moreover, we believe that it is possible to recommend web-style according to regulatory focus and emotional desire which consumers most prefer.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Information types and characteristics within the Wireless Emergency Alert in COVID-19: Focusing on Wireless Emergency Alerts in Seoul (코로나 19 하에서 재난문자 내의 정보유형 및 특성: 서울특별시 재난문자를 중심으로)

  • Yoon, Sungwook;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.45-68
    • /
    • 2022
  • The central and local governments of the Republic of Korea provided information necessary for disaster response through wireless emergency alerts (WEAs) in order to overcome the pandemic situation in which COVID-19 rapidly spreads. Among all channels for delivering disaster information, wireless emergency alert is the most efficient, and since it adopts the CBS(Cell Broadcast Service) method that broadcasts directly to the mobile phone, it has the advantage of being able to easily access disaster information through the mobile phone without the effort of searching. In this study, the characteristics of wireless emergency alerts sent to Seoul during the past year and one month (January 2020 to January 2021) were derived through various text mining methodologies, and various types of information contained in wireless emergency alerts were analyzed. In addition, it was confirmed through the population mobility by age in the districts of Seoul that what kind of influence it had on the movement behavior of people. After going through the process of classifying key words and information included in each character, text analysis was performed so that individual sent characters can be used as an analysis unit by applying a document cluster analysis technique based on the included words. The number of WEAs sent to the Seoul has grown dramatically since the spread of Covid-19. In January 2020, only 10 WEAs were sent to the Seoul, but the number of the WEAs increased 5 times in March, and 7.7 times over the previous months. Since the basic, regional local government were authorized to send wireless emergency alerts independently, the sending behavior of related to wireless emergency alerts are different for each local government. Although most of the basic local governments increased the transmission of WEAs as the number of confirmed cases of Covid-19 increases, the trend of the increase in WEAs according to the increase in the number of confirmed cases of Covid-19 was different by region. By using structured econometric model, the effect of disaster information included in wireless emergency alerts on population mobility was measured by dividing it into baseline effect and accumulating effect. Six types of disaster information, including date, order, online URL, symptom, location, normative guidance, were identified in WEAs and analyzed through econometric modelling. It was confirmed that the types of information that significantly change population mobility by age are different. Population mobility of people in their 60s and 70s decreased when wireless emergency alerts included information related to date and order. As date and order information is appeared in WEAs when they intend to give information about Covid-19 confirmed cases, these results show that the population mobility of higher ages decreased as they reacted to the messages reporting of confirmed cases of Covid-19. Online information (URL) decreased the population mobility of in their 20s, and information related to symptoms reduced the population mobility of people in their 30s. On the other hand, it was confirmed that normative words that including the meaning of encouraging compliance with quarantine policies did not cause significant changes in the population mobility of all ages. This means that only meaningful information which is useful for disaster response should be included in the wireless emergency alerts. Repeated sending of wireless emergency alerts reduces the magnitude of the impact of disaster information on population mobility. It proves indirectly that under the prolonged pandemic, people started to feel tired of getting repetitive WEAs with similar content and started to react less. In order to effectively use WEAs for quarantine and overcoming disaster situations, it is necessary to reduce the fatigue of the people who receive WEA by sending them only in necessary situations, and to raise awareness of WEAs.

An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming (온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구)

  • Choi, Hyun-Seung;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.19-41
    • /
    • 2016
  • Recently, the proliferation of mobile devices such as smartphones and tablet personal computers and the development of information communication technologies (ICT) have led to a big trend of a shift from single-channel shopping to multi-channel shopping. With the emergence of a "smart" group of consumers who want to shop in more reasonable and convenient ways, the boundaries apparently dividing online and offline shopping have collapsed and blurred more than ever before. Thus, there is now fierce competition between online and offline channels. Ever since the emergence of online shopping, a major type of multi-channel shopping has been "showrooming," where consumers visit offline stores to examine products before buying them online. However, because of the growing use of smart devices and the counterattack of offline retailers represented by omni-channel marketing strategies, one of the latest huge trends of shopping is "webrooming," where consumers visit online stores to examine products before buying them offline. This has become a threat to online retailers. In this situation, although it is very important to examine the influencing factors for switching from online shopping to webrooming, most prior studies have mainly focused on a single- or multi-channel shopping pattern. Therefore, this study thoroughly investigated the influencing factors on customers switching from online shopping to webrooming in terms of both the "search" and "purchase" processes through the application of a push-pull-mooring (PPM) framework. In order to test the research model, 280 individual samples were gathered from undergraduate and graduate students who had actual experience with webrooming. The results of the structural equation model (SEM) test revealed that the "pull" effect is strongest on the webrooming intention rather than the "push" or "mooring" effects. This proves a significant relationship between "attractiveness of webrooming" and "webrooming intention." In addition, the results showed that both the "perceived risk of online search" and "perceived risk of online purchase" significantly affect "distrust of online shopping." Similarly, both "perceived benefit of multi-channel search" and "perceived benefit of offline purchase" were found to have significant effects on "attractiveness of webrooming" were also found. Furthermore, the results indicated that "online purchase habit" is the only influencing factor that leads to "online shopping lock-in." The theoretical implications of the study are as follows. First, by examining the multi-channel shopping phenomenon from the perspective of "shopping switching" from online shopping to webrooming, this study complements the limits of the "channel switching" perspective, represented by multi-channel freeriding studies that merely focused on customers' channel switching behaviors from one to another. While extant studies with a channel switching perspective have focused on only one type of multi-channel shopping, where consumers just move from one particular channel to different channels, a study with a shopping switching perspective has the advantage of comprehensively investigating how consumers choose and navigate among diverse types of single- or multi-channel shopping alternatives. In this study, only limited shopping switching behavior from online shopping to webrooming was examined; however, the results should explain various phenomena in a more comprehensive manner from the perspective of shopping switching. Second, this study extends the scope of application of the push-pull-mooring framework, which is quite commonly used in marketing research to explain consumers' product switching behaviors. Through the application of this framework, it is hoped that more diverse shopping switching behaviors can be examined in future research. This study can serve a stepping stone for future studies. One of the most important practical implications of the study is that it may help single- and multi-channel retailers develop more specific customer strategies by revealing the influencing factors of webrooming intention from online shopping. For example, online single-channel retailers can ease the distrust of online shopping to prevent consumers from churning by reducing the perceived risk in terms of online search and purchase. On the other hand, offline retailers can develop specific strategies to increase the attractiveness of webrooming by letting customers perceive the benefits of multi-channel search or offline purchase. Although this study focused only on customers switching from online shopping to webrooming, the results can be expanded to various types of shopping switching behaviors embedded in single- and multi-channel shopping environments, such as showrooming and mobile shopping.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

A Coexistence Model in a Dynamic Platform with ICT-based Multi-Value Chains: focusing on Healthcare Service (ICT 기반 다중 가치사슬의 동적 플랫폼에서의 공존 모형: 의료서비스를 중심으로)

  • Lee, Hyun Jung;Chang, Yong Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.69-93
    • /
    • 2017
  • The development of ICT has leaded the diversification and changes of supplies and demands in markets. It also caused the creations of a variety of values which are differentiated from those in the existing market. Therefore, a new-type market is created, which can include multi-value chains which are from ICT-based created markets as well as the existing markets. We defined the platform as the new-type market. In the platform, the multi-value chains can be coexisted with multi-values. In true market, when a new-type value chain entered into an existing market, it is general that it can be conflicted with the existing value chain in the market. The conflicted problem among multi-value chains in a market is caused by the sharing of limited market resources like suppliers, consumers, services or products among the value chains. In other words, if there are multi-value chains in the platform, then it is possible to have conflictions, overlapping, creations or losses of values among the value chains. To solve the problem, we introduce coexistence factors to reduce the conflictions to reach market equilibrium in the platform. In the other hand, it is possible to lead the creations of differentiated values from the existing market and to augment the total market values in the platform. In the early era of ICT development, ICT was introduced for improvement of efficiency and effectiveness of the value chains in the existing market. However, according to the changed role of ICT from the supporter to the promotor of the market, ICT became to lead the variations of the value chains and creations of various values in the markets. For instance, Uber Taxi created a new value chain with ICT-based new-type service or products with new resources like new suppliers and consumers. When Uber and Traditional Taxi services are playing at the same time in Taxi service platform, it is possible to create values or make conflictions among values between the new and old value chains. In this research, like Uber and traditional taxi services, if there are conflictions among the multi-value chains, then it is necessary to minimize the conflictions in the platform for the coexistence of multi-value chains which can create the value-added values in the platform. So, it is important to predict and discuss the possible conflicted problems between new and old value chains. The confliction should be solved to reach market equilibrium with multi-value chains in the platform. That is, we discuss the possibility of the coexistence of multi-value chains in the platform which are comprised of a variety of suppliers and customers. To do this, especially we are focusing on the healthcare markets. Nowadays healthcare markets are popularized in global market as well as domestic. Therefore, there are a lot of and a variety of healthcare services like Traditional-, Tele-, or Intelligent- healthcare services and so on. It shows that there are multi-suppliers, -consumers and -services as components of each different value chain in the same platform. The platform can be shared by different values that are created or overlapped by confliction and loss of values in the value chains. In this research, as was said, we focused on the healthcare services to show if a platform can be shared by different value chains like traditional-, tele-healthcare and intelligent-healthcare services and products. Additionally, we try to show if it is possible to increase the value of each value chain as well as the total value of the platform. As the result, it is possible to increase of each value of each value chain as well as the total value in the platform. Finally, we propose a coexistence model to overcome such problems and showed the possibility of coexistence between the value chains through experimentation.

Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

  • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.369-384
    • /
    • 2006
  • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Hypothalamus-Pituitary Axis Hormone Genes in Male Rats (수컷 흰쥐의 시상하부-뇌하수체 축 호르몬 유전자 발현에 미치는 6-Hydroxydopamine(6-OHDA)의 영향)

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD) due to its specific toxicity against dopaminergic (DA) neurons. Since DA signals modulate a broad spectrum of CNS physiology, one can expect profound alterations in neuroendocrine activities of both PD patients and 6-OHDA treated animals. Limited applications of 6-OHDA injection model, however, have been made on the studies of hypothalamuspituitary neuroendocrine circuits. The present study was performed to examine whether blockade of brain catecholamine (CA) biosynthesis with 6-OHDA can make any alteration in the transcriptional activities of hypothalamus-pituitary hormone genes in adult male rats. Three-month-old male rats (SD strain) were received 6-OHDA ($200{\mu}g$ in $10{\mu}\ell$ of saline/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. To determine the mRNA levels of hypothalamuspituitary hormone genes, total RNAs were extracted and applied to the semi-quantitative RT-PCRs. The mRNA levels of tyrosine hydroxylase (TH), the rate-limiting enzyme for the catecholamine biosynthesis, were significantly lower than those from the control group (control:6-OHDA=1:0.72${\pm}$0.02AU, p<0.001), confirming the efficacy of 6-OHDA injection. The mRNA levels of gonadotropin-releasing hormone (GnRH) and corticotropin releasing hormone (CRH) in the hypothalami from 6-OHDA group were significantly lower than those from the control group (GnRH, control:6-OHDA=1:0.39${\pm}$0.03AU, p<0.001; CRH, control:6-OHDA=1:0.76${\pm}$0.07AU, p<0.01). There were significant decreases in the mRNA levels of common alpha subunit of glycoprotein homones (Cg$\alpha$), LH beta subunit (LH-$\beta$), and FSH beta subunit (FSH-$\beta$) in pituitaries from 6-OHDA group compared to control values (Cg$\alpha$, control:6-OHDA=1:0.81${\pm}$0.02AU, p<0.001; LH-$\beta$, control:6-OHDA=1:0.68${\pm}$0.04AU, p<0.001; FSH-$\beta$, control:6-OHDA=1:0.84${\pm}$0.05AU, p<0.001). Similarly, the level of adrenocorticotrophic hormone (ACTH) transcripts from 6-OHDA group was significantly lower than that from the control group (control: 6-OHDA=1:0.86${\pm}$0.04AU, p<0.01). The present study demonstrated that centrally injected DA neurotoxin could downregulate the transcriptional activities of the two hypothalamus-pituitary neuroendocrine circuits, i.e., GnRH-gonadotropins and CRH-ACTH systems. These results suggested that hypothalamic CA input might affect on the activities of gonad and adrenal through modulation of hypothalamus-pituitary function, providing plausible explanation for frequent occurrence of sexual dysfunction and poor stress-response in PD patients.

  • PDF

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.