• Title/Summary/Keyword: model space

Search Result 8,171, Processing Time 0.032 seconds

Multi-Dimensional Complex Emotional Model for Various Complex Emotional Expression using Human Friendly Robot System (인간 친화 로봇의 다양한 복합 감정 표현을 위한 다차원 복합 감정 모델 설계)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.210-217
    • /
    • 2009
  • This paper introduces a design of multi-dimensional complex emotional model for various complex emotional expression. It is a novel approach to design an emotional model by comparison with conventional emotional model which used a three-dimensional emotional space with some problems; the discontinuity of emotions, the simple emotional expression, and the necessity of re-designing the emotional model for each robot. To solve these problems, we have designed an emotional model. It uses a multi-dimensional emotional space for the continuity of emotion. A linear model design is used for reusability of the emotional model. It has the personality for various emotional results although it gets same inputs. To demonstrate the effectiveness of our model, we have tested with a human friendly robot.

  • PDF

Navigable Space-Relation Model for Indoor Space Analysis (실내 공간 분석을 위한 보행 공간관계 모델)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.75-86
    • /
    • 2011
  • Three-dimensional modeling of cities in the real-world is an essential task for city planning and decision-making. And many three-dimensional city models are being developed with the development of wireless Internet and location-based services that identify the location of users and provide the information increases for consumers. Especially, in case of urban areas of Korea, indoor space modeling as well as outdoor is needed due to the high-rise buildings densities. Also location-based services should be provided through spatial analysis such as the shortest path based on a space model. Many studies of three-dimensional city models are feature models. In a feature model, space is represented by combining primitives, and relationships among spaces are represented only if shared primitives are detected. So relationships between complex three-dimensional objects in space is difficult to be defined through the feature models. In this study, Navigable space-relation model(NSRM) is developed, which is topological data model for efficient representation of spatial relationships between objects based on the network structure.

Statistical Inference for Space Time Series Model with Application to Mumps Data

  • Jeong, Ae-Ran;Kim, Sun-Woo;Lee, Sung-Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.475-486
    • /
    • 2006
  • Space time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations or as sets of spatial data collected at a number of time points. The major purpose of this article is to formulate a class of space time autoregressive moving average (STARMA) model, to discuss some of the their statistical properties such as model identification approaches, some procedure for estimation and the predictions. For illustration, we apply this STARMA model to the mumps data. The data set of mumps cases consists of the number of cases of mumps reported from twelve states monthly over the years 1969-1988.

  • PDF

Multi-Observations of Magnetic Cloud

  • Sung, Suk-Kyung;Marubashi, Katsuhide;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • The geometry of an MC (magnetic cloud) in the interplanetary space can be estimated by the magnetic flux rope model. But the single point observation in the interplanetary space near the Earth is scanty to comprehend the global configuration of MC because the MC is considered a huge loop extending from the Sun with both legs rooted on the Sun. If the MC is observed at two different locations sufficiently far away from each other, it may provide the global configuration of the MC. In this study, we model the MC which is observed two different locations using a simple straight cylinder model. The MC model fit parameters are the flux rope axis orientation (${\Theta}$, ${\phi}$), the intensity of the magnetic field at the flux rope axis ($B_0$), the radius of the MC ($R_0$), and the impact parameter (p), etc. With the MC model fit parameters we look into the difference between two observed MC geometries and also calculate the magnetic flux and helicity of the MC.

  • PDF

Model-independent constraints on the light-curve parameters and reconstructions of the expansion history from Type Ia supernovae

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2019
  • We use iterative smoothing reconstruction method along with exploring in the parameter space of the light curves of the JLA supernova compilation (Joint Light-curve Analysis) to simultaneously reconstruct the expansion history of the universe as well as putting constrains on the light curve parameters without assuming any cosmological model. Our constraints on the light curve parameters of the JLA from our model-independent analysis seems to be closely in agreement with results assuming ΛCDM cosmology or using Chevallier-Polarski-Linder (CPL) parametrization for the equation of state of dark energy. This implies that there is no hidden significant feature in the data that could be neglected by cosmology model assumption. The reconstructed expansion history of the universe and properties of dark energy seems to be in good agreement with expectations of the standard ΛCDM model. Our results also indicate that the data allows a considerable flexibility for expansion history of the universe.

  • PDF

A Study on the Space Evaluation Structure of Lobby Area in Obstetric Hospitals (산부인과 전문병원 로비의 공간평가구조에 관한 연구)

  • 한혜신;박찬일
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2004
  • The purpose of this study is to suggest designing goals and directions in the lobby area of obstetric hospitals by constructing a space evaluation structure model, which is made by image evaluation structure model used by SD method and Advanced Repertory Grid Technique. As a result of the image evaluation used by SD method, it turned out 4 factors which are related to recognizing and evaluating the space formativeness, openness, decorativeness, sensitiveness. I found out the relationship between space evaluation structure and the element of interior space. I also suggested detailed designing method based on this relationship. Space evaluation structure model can be applied to designing lobby areas of obstetric hospitals to reconstruct more specific and objective designing goals and standards rather simply designer's sensitive and abstract designing approach.

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF

Parameter Space Restriction in State-Space Model (상태 공간 모형에서의 모수 공간 제약)

  • Jeon, Deok-Bin;Kim, Dong-Su;Park, Seong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • Most studies using state-space models have been conducted under the assumption of independently distributed noises in measurement and state equation without adequate verification of the assumption. To avoid the improper use of state-space model, testing the assumption prior to the parameter estimation of state-space model is very important. The purpose of this paper is to investigate the general relationship between parameters of state-space models and those of ARIMA processes. Under the assumption, we derive restricted parameter spaces of ARIMA(p,0,p-1) models with mutually different AR roots where $p\;{\le}\;5$. In addition, the results of ARIMA(p,0,p-1) case can be expanded to more general ARIMA models, such as ARIMA(p-1,0,p-1), ARIMA(p-1,1,p-1), ARIMA(p,0,p-2) and ARIMA(p-1,1,p-2).

  • PDF

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.

Position Clustering of Moving Object based on Global Color Model (글로벌 칼라기반의 이동물체 위치 클러스터링)

  • Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.868-871
    • /
    • 2009
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly.

  • PDF