• Title/Summary/Keyword: model scanner

Search Result 393, Processing Time 0.029 seconds

Data Acquisition using Terrestrial Laser Scanner and RTK-GPS for Implementation of Beach Model (해빈 모형 구현을 위한 지상용 레이저 스캐너와 RTK-GPS의 자료 획득)

  • Lee, Hyung-Seok;Kim, In-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2009
  • Various methods have been employed for acquiring beach surface data, which are used to monitor shoreline changes due to beach erosion. This study explores the possibility of constructing and implementing a surface model of beach using data acquired with a terrestrial laser scanner and RTK-GPS. Digital images and three-dimensional data of beach areas acquired at 20 cm intervals using a laser scanner were used to create a digital surface model covered with digital image. Seven months later, the beach area was surveyed using an RTK-GPS, and another beach model was constructed using the data collected with an accuracy of 1.9 cm. The use of a terrestrial laser scanner is expected to ensure acquisition of good quality results and help deal with seasonal changes in beach areas. Because readings obtained with the RTK-GPS are dependent on the number of sampling points in beach model, difficulties are encountered when fixing the survey points. However, RTK-GPS could be used to implement a three-dimensional model by correcting the hidden parts in images obtained using a terrestrial laser scanner. Therefore, an RTK-GPS and a terrestrial laser scanner can be used in combination to obtain more precise data for the construction of beach model data.

  • PDF

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

A 3D Foot Scanner Using Mirrors and Single Camera (거울 및 단일 카메라를 이용한 3차원 발 스캐너)

  • Chung, Seong-Youb;Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • A structured beam laser is often used to scan object and make 3D model. Multiple cameras are inevitable to see occluded areas, which is the main reason of the high price of the scanner. In this paper, a low cost 3D foot scanner is developed using one camera and two mirrors. The camera and two mirrors are located below and above the foot, respectively. Occluded area, which is the top of the foot, is reflected by the mirrors. Then the camera measures 3D point data of the bottom and top of the foot at the same time. Then, the whole foot model is reconstructed after symmetrical transformation of the data reflected by mirrors. The reliability of the scan data depends on the accuracy of the parameters between the camera and the laser. A calibration method is also proposed and verified by experiments. The results of the experiments show that the worst errors of the system are 2 mm along x, y, and z directions.

Robust Design of Leaf Spring of a Polygon Mirror Scanner Motor Against Shock (충격에 강인한 폴리곤 미러 스캐너 모터의 판 스프링 설계)

  • Lee, Sang-Wook;Kim, Myung-Gyu;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.515-520
    • /
    • 2008
  • This paper develops a mite element model of a polygon mirror scanner motor supported by the sintered bearing and flexible supporting structures to analyze the shock response by using the finite element method and the mode superposition method. The validity of the proposed model is verified by comparing the simulated natural frequencies and shock response with the experimental ones. It investigates the displacement and the stress of the most vulnerable component, i.e. a leaf spring due to shock, and it proposes a robust design of leaf spring of a polygon mirror scanner motor against shock.

  • PDF

A Study on 3D modeling using a 3D scanner and VisualLISP (3D scanner 와 VisualLISP을 이용한 3차원 모델링에 관한 연구)

  • 김세민;이승수;김민주;장성규;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.410-413
    • /
    • 2001
  • This paper is to model a 3D-shape product applying mathematically the data acquired from a 3D scanner and using an Automatic Design Program. The research studied in the reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape solid models in CAE and CAM, based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 3D scanner in this study with which we will open a new field of reverse engineering by a program whic hcan design a 3D-shape solid model in a CAD-based program automatically.

  • PDF

Comparative study on quality of scanned images from varying materials and surface conditions of standardized model for dental scanner evaluation (치과용 스캐너 평가를 위한 국제표준모델의 재료 및 표면 상태에 따른 스캔 영상 결과물 비교 연구)

  • Park, Ju-Hee;Seol, Jeong-Hwan;Lee, Jun Jae;Lee, Seung-Pyo;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.104-115
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the image acquisition ability of intraoral scanners by analyzing the comprehensiveness of scanned images from standardized model, and to identify problems of the model. Materials and Methods: Cast models and 3D-printed models were prepared according to international standards set by ISO12836 and ANSI/ADA no. 132, which were then scanned by model scanner and two different intraoral scanners (TRIOS3 and CS3500). The image acquisition performance of the scanners was classified into three grades, and the study was repeated with varying surface conditions of the models. Results: Model scanner produced the most accurate images in all models. Meanwhile, CS3500 showed good image reproducibility for angled structures and TRIOS3 showed good image reproducibility for rounded structures. As for model ingredients, improved plaster model best reproduced scan images regardless of the type of scanner used. When limited to 3D-printed model, powdered surface condition resulted in higher image quality. Conclusion: When scanning structures beyond FOV (field of view) in standardized models (following ISO12836 and ANSI/ADA 132), lack of reference points to help distinguish different faces confuses the scanning and matching process, resulting in inaccurate display of images. These results imply the need to develop a new standard model not confined to simple pattern repetition and symmetric structure.

Evaluation of the reproducibility of various abutments using a blue light model scanner

  • Kim, Dong-Yeon;Lee, Kyung-Eun;Jeon, Jin-Hun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.328-334
    • /
    • 2018
  • PURPOSE. To evaluate the reproducibility of scan-based abutments using a blue light model scanner. MATERIALS AND METHODS. A wax cast abutment die was fabricated, and a silicone impression was prepared using a silicone material. Nine study dies were constructed using the prepared duplicable silicone, and the first was used as a reference. These dies were classified into three groups and scanned using a blue light model scanner. The first three-dimensional (3D) data set was obtained by scanning eight dies separately in the first group. The second 3D data set was acquired when four dies were placed together in the scanner and scanned twice in the second group. Finally, the third 3D data set was obtained when eight dies were placed together in the scanner and scanned once. These data were then used to define the data value using third-dimension software. All the data were then analyzed using the non-parametric Kruskal-Wallis H test (${\alpha}=.05$) and the post-hoc Mann-Whitney U-test with Bonferroni's correction (${\alpha}=.017$). RESULTS. The means and standard deviations of the eight dies together were larger than those of the four dies together and of the individual die. Moreover, significant differences were observed among the three groups (P<.05). CONCLUSION. With larger numbers of abutments scanned together, the scan becomes more inaccurate and loses reproducibility. Therefore, scans of smaller numbers of abutments are recommended to ensure better results.

Development and verification of a novel system for computed tomography scanner model construction in Monte Carlo simulations

  • Ying Liu;Ting Meng ;Haowei Zhang ;Qi Su;Hao Yan ;Heqing Lu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4244-4252
    • /
    • 2022
  • The accuracy of Monte Carlo (MC) simulations in estimating the computed tomography radiation dose is highly dependent on the accuracy of CT scanner model. A system was developed to observe the 3D model intuitively and to calculate the X-ray energy spectrum and the bowtie (BT) filter model more accurately in Monte Carlo N-particle (MCNP). Labview's built-in Open Graphics Library (OpenGL) was used to display basic surfaces, and constructive solid geometry (CSG) method was used to realize Boolean operations. The energy spectrum was calculated by simulating the process of electronic shooting and the BT filter model was accurately modeled based on the calculated shape curve. Physical data from a study was used as an example to illustrate the accuracy of the constructed model. RMSE between the simulation and the measurement results were 0.97% and 0.74% for two filters of different shapes. It can be seen from the comparison results that to obtain an accurate CT scanner model, physical measurements should be taken as the standard. The energy spectrum library should be established based on Monte Carlo simulations with modifiable input files. It is necessary to use the three-segment splicing modeling method to construct the bowtie filter model.

Case study - Design a cell phone cover by using reverse engineering (사례 연구 - 3차원 역설계를 이용한 휴대폰 보호 커버 설계)

  • Kim, Daejoon;Sung, Jinho;Chung, Sungdae;Chung, Yunchan
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • A 3D scanner scans and captures the shape of a real-world object. The captured shape can be used to construct three-dimensional model for CAD/CAM applications. In this study we have tried to design a cell phone cover by using the 3D scanner and reverse engineering. A 3D scanner is used to capture the shape of a cell phone. The 3D scanner generates a point cloud as the shape information. A three-dimensional CAD model for the cell phone is constructed from the point cloud. A cell phone cover is designed based on the CAD model of the cell phone. To check the integrity of this design process a prototype of the cover is made and assembled with the cell phone.

  • PDF

Accuracy and reliability of measurements performed using two different software programs on digital models generated using laser and computed tomography plaster model scanners

  • Camardella, Leonardo T.;Ongkosuwito, Edwin M.;Penning, E. Willemijn;Kuijpers-Jagtman, Anne Marie;Vilella, Oswaldo V.;Breuning, K. Hero
    • The korean journal of orthodontics
    • /
    • v.50 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • Objective: The aim of this study was to compare the accuracy and reliability of measurements performed using two different software programs on digital models generated using two types of plaster model scanners (a laser scanner and a computed tomography [CT] scanner). Methods: Thirty plaster models were scanned with a 3Shape laser scanner and with a Flash CT scanner. Two examiners performed measurements on plaster models by using digital calipers and on digital models by using Ortho Analyzer (3Shape) and Digimodel® (OrthoProof) software programs. Forty-two measurements, including tooth diameter, crown height, overjet, overbite, intercanine and intermolar distances, and sagittal relationship, were obtained. Results: Statistically significant differences were not found between the plaster and digital model measurements (ANOVA); however, some discrepancies were clinically relevant. Plaster and digital model measurements made using the two scanning methods showed high intraclass coefficient correlation values and acceptable 95% limits of agreement in the Bland-Altman analysis. The software used did not influence the accuracy of measurements. Conclusions: Digital models generated from plaster casts by using laser and CT scanning and measured using two different software programs are accurate, and the measurements are reliable. Therefore, both fabrication methods and software could be used interchangeably.