• Title/Summary/Keyword: model reference sliding mode control

Search Result 41, Processing Time 0.026 seconds

The 3-Phase Induction Motor Speed Control by the MRA-DSM controller (MRA-DSM 제어기를 이용한 3상 유도전동기의 속도 제어)

  • 원영진;한완옥;박진홍;이종규;이성백
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.1
    • /
    • pp.54-62
    • /
    • 1995
  • This paper is a study on a speed control of an induction motor used the MRA-DSM(Mode1 Reference Adaptive-Discrete Sliding Mode) controller. In this paper, when controls motor speed, DSM algorithm is proposed for having Robustness against disturbance and parameter variation. and it is also proposed MRA-DSM including the additional load model reference algorithm, which can be compensated the discontinuous control imputs at sliding mode and followed the model Preference independent of parameter variation of control subjects. The control system is composed of the parallel processing control system using the microprocessor for maximizing the performance of control systems and the real time processing. Also it simplifies the hardware composed of controlling the system by software and improves the reliability of the system. And while MRA-DSM control, faster response characteristics of 27.2 % is obtained than DSM control.

  • PDF

Induction Motor Speed Controlf MRAS-Based Load-Torque Observer (모델 기준 적응 시스템(MRAS) 부하 토크 관측기를 이용한 유도 전동기의 속도 제어)

  • Cho, Moon-Taek;Lee, Chung-Sik;Lee, Se-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 2007
  • This paper investigates a speed sensorless control of induction motor. The control strategy is based on MRAS(Model Reference Adaptive System) using load-torque observer as a reference model for flux estimation. The speed response of conventional MRAS controller characteristics is affected by variations of load torque disturbance. In the proposed system, the speed control characteristics using a load-torque observer control isn't affected by a load torque disturbance. Control algorithm that propose whole system through MATLAB SIMULINK because do modelling simulation result are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor. Therefore we hope to be extended in industrial application.

  • PDF

Sensorless Indirect Field Oriented Control of Two-phase In­duction Motor by Model Reference Adaptive Speed Estimator

  • Park Seong Su;Kim Sam Young;Park Seung Yub
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.616-621
    • /
    • 2004
  • This paper investigated the speed sensorless indirect vector control of a two-phase induction motor to implement adjustable-speed drive for low-power applications. The sliding mode observer estimates rotor speed. The convergence of the nonlinear time-varying observer along with the asymptotic stability of the controller was analyzed. To define the control action which maintains the motion on the sliding manifold, an 'equivalent control' concept was used. It was simulated and implemented on a sensorless indirect vector drive for 150W two-phase induction motor. The simulation and experimental results demonstrated effectiveness of the estimation method.

  • PDF

Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System (능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement (차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교)

  • Yoon, Moonyoon;Baek, Seunghwan;Choi, Jungkwang;Boo, Kwangsuck;Kim, Heungseob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

Induction Motor Speed Control of MRAS-Based Load-Torque Observer (모델기준적응시스템(MRAS) 기반의 부하토크관측기를 이8한 유도전동기 속도제어)

  • Kim, E.G.;Lee, H.G.;Lee, S.H.;Oh, B.H.;Chung, C.B.;Hahm, N.G.;Jeon, K.Y.;Lee, S.H.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1004-1005
    • /
    • 2006
  • This paper investigates a speed sensorless control of induction motor. The control strategy is based on MRAS (Model Reference Adaptive System) using load-torque observer as a reference model for flux estimation. The speed response of conventional MRAS controller characteristics is affected by variations of load torque disturbance. In the proposed system, the speed control characteristics using a load-torque observer control isn't affected by a load torque disturbance. Simulation results are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor.

  • PDF

Development of New Numerical Model and Controller of AFS System (AFS 시스템의 새로운 수학적 모델 및 제어기 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

A comparative study of different active heave compensation approaches

  • Zinage, Shrenik;Somayajula, Abhilash
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.373-397
    • /
    • 2020
  • Heave compensation is a vital part of various marine and offshore operations. It is used in various applications, including the transfer of cargo between two vessels in the open ocean, installation of topsides of an offshore structure, offshore drilling and for surveillance, reconnaissance and monitoring. These applications typically involve a load suspended from a hydraulically powered winch that is connected to a vessel that is undergoing dynamic motion in the ocean environment. The goal in these applications is to design a winch controller to keep the load at a regulated height by rejecting the net heave motion of the winch arising from ship motions at sea. In this study, we analyze and compare the performance of various control algorithms in stabilizing a suspended load while the vessel is subjected to changing sea conditions. The KCS container ship is chosen as the vessel undergoing dynamic motion in the ocean. The negative of the net heave motion at the winch is provided as a reference signal to track. Various control strategies like Proportional-Derivative (PD) Control, Model Predictive Control (MPC), Linear Quadratic Integral Control (LQI), and Sliding Mode Control (SMC) are implemented and tuned for effective heave compensation. The performance of the controllers is compared with respect to heave compensation, disturbance rejection and noise attenuation.