• 제목/요약/키워드: model reference adaptive control

검색결과 380건 처리시간 0.03초

A Design of a Robust Self-Tuning Controller in the presence of a Parameter Perturbation and Disturbance (매개 변수 섭동과 외란이 존재하는 강건한 자기 동조 제어기의 설계)

  • Park, Ju-Kwang;Hong, Sun-Hak;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.426-429
    • /
    • 1989
  • The robust self-tuning controller is designed which is guaranteed the asymptotic regulation and tracking in the presence of a bounded parameter perturbation. The global stability in the presence of a finite noise and disturbance is ensured. The controller has a error driven structure, and involves the common model of a disturbance and reference input in the internal model. The adaptive system tunes the controller parameters such that the quadratic performance index which involves a weighting factor is optimized.

  • PDF

Development of a self-Tuning fuzzy controller for the speed control of an induction motor (유도전동기 속도 제어를 위한 뉴로 자기 동조 퍼지 제어기 개발)

  • Kim, Do-Han;Han, Jin-Wook;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.248-252
    • /
    • 2003
  • This paper has a control method proposed for the effective self-tuning fuzzy speed control based on neural network of the induction motor indirect vector control. The vector control of an induction motor provides the decoupled control of the rotor flux magnitude and the torque producing current to performance is desirable. But, the drive performance often degrades for the machine parameter variations and its condition give rise to coupling of flux and torque current. The fuzzy speed control of an induction motor has the robustness about machine parameter variations compared with conventional PID speed control in a way. That proved to be some waf from the true. The purpose of this paper is to improve the adaptation by offering self-turning function to fuzzy speed controller. In this paper, the adaptive mechanism of fuzzy speed control in used ANN(Artificial Neural Network) technique is applied in an IFO induction machine drive, such that the machine can follow a reference model (an ideal field oriented machine) to achieve desired speed. In this paper proved the self-turning method of fuzzy controller has the robustness about parameter variation and the wide range of adaptation by simulation.

  • PDF

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제53권1호
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1915-1919
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제25권5호
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

ZPM Compensation and Impedance Control for Improving Walking Stability of Biped Robots (2족 보행 로봇의 보행 안정성 향상을 위한 ZPM보상 및 임피던스 제어)

  • Jeong, Ho-Am;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제24권4호
    • /
    • pp.1007-1015
    • /
    • 2000
  • This paper proposes an adaptive trajectory generation strategy of using on-line ZMP information and an impedance control method for biped robots. Since robots experience various disturbances during their locomotion, their walking mechanism should have the robustness against those disturbances, which requires an on-line adaptation capability. In this context, an on-line trajectory planner is proposed to compensate the required moment for recovering stability. The ZMP equation and sensed ZMP information are used in this trajectory generation strategy. In order to control a biped robot to be able to walk stably, its controller should guarantee stable footing at the moment of feet contacts with the ground as well as maintaining good trajectory tracking performance. Otherwise, the stability of robot will be significantly compromised. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, this paper. proposes to increase the damping of the leg drastically and to modify the reference trajectory of the leg. In the proposed control scheme, the constrained leg is controlled by impedance control using the impedance model with respect to the base link. Computer simulations performed with a 3-dof environment model that consists of combination of a nonlinear and linear compliant contact model show that the proposed controller performs well and that it has robustness against unknown uneven surface. Moreover, the biped robot with the proposed trajectory generator can walk even when it is pushed with a certain amount of external force.

Time Constant Estimation of Induction Motor rotor using MRAS Fuzzy Control (MRAS 퍼지제어를 이용한 유도전동기 회전자의 시정수 추정)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa;Cha Young-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.155-161
    • /
    • 2005
  • This paper presents time a constant estimation of induction motor using MRAS(model reference adaptive system) fuzzy control. The rotor time constant is enabled from the estimation of rotor flux, which has two methods. One is to estimate it based on the stator current and the other is to integrate motor terminal voltage. If the parameters are correct, these two methods must yield the same results. But, for the case where the rotor time constant is over or under estimated, the two rotor nut estimation have different angles. Furthermore their angular positions are related to the polarity of rotor time constant estimation error. Based on these observation, this paper develops a rotor time constant update algorithm using fuzzy control. This paper shows the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Sensless Vector Control of Field Oriented type for Induction Machine Using Flux Observer (2차 자속관측기 이용한 자계방향형 유도전동기 센스리스 벡터제어)

  • Hong, S.I.;Son, E.S.;Choi, J.Y.;Hong, J.P.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1135-1137
    • /
    • 2001
  • 본 연구는 자계방향 기준 벡터제어 이론에 기초하여 속도 센스리스 벡터제어를 구현한다. 벡터제어는 상태량에 기초한 MRAS (MRAS: Model Reference Adaptive System)방법은 이득정수의 결정이 어려운 결점을 가지고 있다. 여기서는 관측기 이론에 기초하여 2차자속 관측기와 전류센스에서 검출한 전류값으로 속도추정을 행하는 새로운 속도 추정법을 제안한다. 그리고 제안한 방법이 자계 방향 벡터제어 시스템의 실현에 가능성이 있음을 시뮬레이션으로 검토한다.

  • PDF