• Title/Summary/Keyword: model reference adaptive control

Search Result 380, Processing Time 0.024 seconds

External Force Control for Two Dimensional Contour Following ; Part 2. Analysis and Implementation of Analysis Control

  • Park, Young-Chil;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.135-139
    • /
    • 1992
  • Control of tool-environment interaction force to comply the robot system to an environment is of vital in many automated process. This paper presents the implementation of an adaptive force control with commercial robot system in two dimensional contour following task. A model reference adaptive control system, combined with the linear compensators, is implemented. That is, a use of adaptive control is to provide an auxiliary control system so that the contour following performance can be improved from that of using linear control system only. Hyperstability is used to derive the adaptive control law. Experimental verification of the proposed control system is obtained using PUMA 560 robot system. Data obtained experimentally shows that the use of additional adaptive control system improves the contour following performance about 30% in RMS contact force errors upon that of the system controlled by the linear compensators only.

  • PDF

Composite Adaptive Dual Fuzzy Control of Nonlinear Systems (비선형 시스템의 이원적 합성 적응 퍼지 제어)

  • Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.141-144
    • /
    • 2003
  • A composite adaptive dual fuzzy controller combining the approximate mathematical model, linguistic model description, linguistic control rules and identification modeling error into a single adaptive fuzzy controller is developed for a nonlinear system. It ensures the system output tracks the desired reference value and excites the plant sufficiently for accelerating the parameter estimation process so that the control performances are greatly improved. Using the Lyapunov synthesis approach, proposed controller is analyzed and simulation results verify the effectiveness of the proposed control algorithm.

  • PDF

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.492-501
    • /
    • 2018
  • In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.

System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network (신경회로망을 이용한 AUV의 시스템 동정화 및 응용)

  • 이판묵;이종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

Chaos in nonlinear control systems

  • Lee, Joon-Suh;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.758-762
    • /
    • 1994
  • Complicated dynamical behavior can occur in model reference adaptive control systems when two external sinusoidal signals are introduced although the plant and reference model are stable linear first older systems. The phase portrait plot and the power spectral analysis indicate chaotic behavior. In the system treated, a positive Lyapuniov exponent and non-integer dimension clearly manifest chaotic nature of the system.

  • PDF

A study on the model reference adaptive control using neural network (신경회로망을 이용한 기준모델 제어기에 관한 연구)

  • 조규상;김규남;양태진;유시영;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.243-247
    • /
    • 1992
  • This paper describes a neural network based control scheme with MRAC. The system consists of two neural network; one is for identifier and the other is for controller. Identification is firstly performed to learn the behavior of the nonlinear plant. Neural net controller is next trained by backpropagating the error at the output of plant through the identifier. Also the training method used in this paper repeatedly updates weights of neural network to track the reference model.

  • PDF

Rotor Time Constant Estimation for Induction Motor Direct Vector Control (유도전동기 직접벡터제어를 위한 회전자 시정수 추정)

  • Bae Sang-Jun;Choi Jong-Woo;Kim Heung-Geun;Lee Hong-Hee;Chun Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.413-419
    • /
    • 2004
  • In the induction motor direct vector control system using the Gopinath model flux observer, the deterioration of the dynamic response due to the detuned rotor time constant is investigated. To solve this problem, the on line estimation algorithm of the rotor time constant using model reference adaptive control is proposed. The effect of the motor parameter variation on the rotor time constant estimation is analyzed through experiment. The estimation error due to the parameter variation converges within 5%. Thus applying the proposed algorithm to the Gopinath model flux observer, the robust direct vector control system of the induction motor to the parameter variation can be implemented.

A Study on an Adaptive Model Predictive Control for Nonlinear Processes using Fuzzy Model (퍼지모델을 이용한 비선형 공정의 적응 모델예측제어에 관한 연구)

  • 박종진;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.97-105
    • /
    • 1996
  • In this paper, an adaptive model predictive controller for nodinear processes using fuzzy model is proposed. Adaptive structure is implemented by recursive fuzzy modeling. The model and control law can be obtained the same as GPC, because the consequent parts of the fuzzy model comprise linear equations of input and output variables. The proposed Adaptive fuzzy model predictive controller (AFMPC) controls nonlinear process well due to the intrinsic nonlinearity of the fuzzy model. When AFMPC's output is variation in the process control input, it maintains zero steady-state offset for a constant reference input and has superior performance. The properties and performance of the proposed control scheme were examined with nonlinear plant by simulation.

  • PDF

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Choi, Jung-Sik;Nam, Su-Myung;Ko, Jae-Sub;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-320
    • /
    • 2005
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of nor measured between the motor speed and output of a reference model. The control performance of the adaptive fuzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.