• 제목/요약/키워드: model of learning

검색결과 9,913건 처리시간 0.04초

수학 자기효능감과 수학성취도의 관계에서 학습전략의 매개효과 - 잠재성장모형의 분석 - (Mediating Effect of Learning Strategy in the Relation of Mathematics Self-efficacy and Mathematics Achievement: Latent Growth Model Analyses)

  • 염시창;박철영
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제50권1호
    • /
    • pp.103-118
    • /
    • 2011
  • The study examined whether the relation between mathematics self-efficacy and mathematics achievement was partially mediated by the learning strategies, using latent growth model analyses. It was also examined the auto-regressive, cross-lagged (ARCL) panel model for testing the stability and change in the relation of mathematics self-efficacy and learning strategy over time. The study analyzed the first-year to the third-year data of the Korean Educational Longitudinal Survey (KELS). The result of ARCL panel model analysis showed that earlier mathematics self-efficacy could predict later learning strategy use. There were linear trends in mathematics self-efficacy, learning strategy, and mathematics achievement. Specifically, mathematics achievement was increased over the three time points, whereas mathematics self-efficacy and learning strategies were significantly decreased. In the analyses of latent growth models, the mediating effects of learning strategies were overall supported. That is, both of initial status and change rate of rehearsal strategy partially mediated the relation of mathematics self-efficacy and mathematics achievement. However, in elaboration and meta-cognitive strategies, only the initial status of each variable showed the indirect relationship.

e-Learning 소프트웨어의 품질평가 모델 개발 (Development of e-Learning Software Quality Evaluation Model)

  • 이경철;이하용;양해술
    • 한국산학기술학회논문지
    • /
    • 제8권2호
    • /
    • pp.309-323
    • /
    • 2007
  • 최근 급격히 확산된 광역 인프라를 기반으로 탄생된 e-Learning 은 학교에서의 교육혁신 및 사회에서의 인적자원개발을 위한 새로운 수단으로 각광받고 있을 뿐만 아니라 디지털 콘텐츠 산업의 주요 핵심으로 등장하게 되었다. 본 논문에서는 e-Learning 소프트웨어의 기반 기술의 특성을 분석하고 e-Learning 소프트웨어의 품질시험 및 평가를 위한 품질특성을 분석하여 e-Learning 소프트웨어 품질 평가모델을 개발하였다. 이를 위해 관련 국제 표준을 도입하여 e-Learning 소프트웨어에 대한 품질평가 체계를 확립하고 품질평가를 위한 평가모델을 개발하였다. 이를 통해, 품질평가를 효과적으로 수행하여 경쟁력 있는 e-Learning소프트웨어 제품의 개발을 촉진할 수 있을 것이라고 사료된다.

  • PDF

빅데이터를 접목한 스마트시대 온라인 학습 모델의 제안과 실증 (Proposal of Smart era Online Learning Model with BigData)

  • 박재천;이두영;국성희
    • 한국정보통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.991-1000
    • /
    • 2015
  • 본 논문은 스마트시대의 온라인 학습에 대한 논문으로, 새로운 모델을 제안하고 실증하는데 초점을 두었다. 온라인 학습 클래스 운영에 있어 각 학습 요인들을 통해서 최종 성취도를 예측하는 연구를 진행하였다. 이에 학습 운영 요인 7가지를 정하고 학습자들의 데이터를 수집한 후 의사결정나무방법을 통한 예측 모델을 완성한다. 모델을 통한 예측성을 확인한 후, 일반성 확보를 위해 다른 교과목에도 모델을 적용시켜 예측성을 확인하였다. 결과적으로 기존의 온라인 클래스의 정적인 학습 모델을 넘어 객관적인 지표를 이용한 학업성취도를 상시적으로 확인할 수 있게 하였다. 학습자와 교수자 모두가 학습 중 유용하게 활용할 수 있는 스마트시대 새로운 패러다임의 학습 모델을 제안한다.

모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리 (Learning-based Inertial-wheel Odometry for a Mobile Robot)

  • 김명수;장근우;박재흥
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

연합학습시스템에서의 MLOps 구현 방안 연구 (The Study on the Implementation Approach of MLOps on Federated Learning System)

  • 홍승후;이강윤
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.97-110
    • /
    • 2022
  • 연합학습은 학습데이터의 전송없이 모델의 학습을 수행할 수 있는 학습방법이다. IoT 혹은 헬스케어 분야는 사용자의 개인정보를 다루는 만큼 정보유출에 민감하여 시스템 디자인에 많은 주의를 기울여야 하지만 연합학습을 사용하는 경우 데이터가 수집되는 디바이스에서 데이터가 이동하지 않기 때문에 개인정보 유출에 자유로운 학습방법으로 각광받고 있다. 이에 따라 많은 연합학습 구현체가 개발되었으나 연합학습을 사용하는 시스템의 개발과 운영을 위한 시스템 설계에 관한 구체적인 연구가 부족하다. 본 연구에서는 연합학습을 실제 프로젝트에 적용하여 IoT 디바이스에 배포하고자 할 때 연합학습의 수명주기, 코드 버전 관리, model serving, 디바이스 모니터링에 대한 대책이 필요함을 보이고 이러한 점을 보완해주는 개발환경에 대한 설계를 제안하고자 한다. 본 논문에서 제안하는 시스템은 중단 없는 model-serving을 고려하였고 소스코드 및 모델 버전 관리와 디바이스 상태 모니터링, 서버-클라이언트 학습 스케쥴 관리기능을 포함한다.

학습기대와 지식공유 지각이 사용자 만족과 지속사용에 미치는 영향 (Effects of Learning Expectation and Perceived Knowledge Sharing on User Satisfaction and IS Continuance)

  • 김인찬;백승령
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제28권4호
    • /
    • pp.377-401
    • /
    • 2019
  • Purpose The purpose of this study is to investigate the effects of learning expectation and perceived knowledge sharing on user satisfaction and IS continuance in the Korean Army which is currently using the Regiments' Information System to help their Integrated Administration Management. Based on both the Information System(IS) Continuance Model and IS Success Model, this study also examine the role of system quality on user satisfaction. We develop a research model(structural equation model) and its hypotheses that learning expectation, perceived knowledge sharing, and system quality increase users' satisfaction, which leads to IS continuance. The effect of learning expectation on perceived knowledge sharing is also hypothesized. Design/methodology/approach Online Survey using e-mails was administered to test our research model and associated hypotheses. Among the 360 e-mail letters including our survey questionnaire, 285 responses were collected via e-mails. Meaningful 225 cases were analyzed for our study. SPSS Statistics 24.0 and SmartPLS 3.0 were used to analyze both measuremant test and hyotheses test by using the data set. Findings Survey results show that learning expectation(confirmation variable), learning expectation, perceived knowledge sharing(a perceived usefulness variable), and system quality(a system characteristic) each increases user satisfaction, which leads to IS continuance, under the control of the effect of habit to use information systems. Learning expectation also has a positive influence on perceived knowledge sharing. Theoretical and practical implications are presented.

건설분야의 지식관리 적용을 위한 학습모델 개발 (Development of Learning Model for Knowledge Management in Construction Area)

  • 정인수;김병곤;나혜숙
    • 한국건설관리학회논문집
    • /
    • 제3권1호
    • /
    • pp.65-73
    • /
    • 2002
  • 건설산업의 특성상 엔지니어링 등 소프트웨어 부문은 지식이 곧 기업의 경쟁력을 좌우하기 때문에 철저한 보안 강화로 지식의 소재조차 불분명한 상황이며, 건설현장의 지식은 프로젝트의 종료와 함께 사장되어 가는 현실에 직면해 있다. 이 연구의 목적은 지식경영을 추진하고 있는 기존 업체의 지식관리 학습모델을 고찰하여 이를 근간으로 새로운 모델을 개발하고 건설업체에 적용하는 시나리오를 설정하는 것이다 이를 토대로 사장되어 가는 건설현장 지식을 유통시켜, 건설산업의 전반적인 수준 향상을 도모하고자 한다. 이에 지식관리와 관련한 선행 연구를 분석하여, EIP, EDMS, 지식 및 실패사례관리, CoP, e-Learning으로 구성되는 건설분야의 지식관리 학습모델을 개발하였다.

설명 가능한 AI를 적용한 기계 예지 정비 방법 (Explainable AI Application for Machine Predictive Maintenance)

  • 천강민;양재경
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.227-233
    • /
    • 2021
  • Predictive maintenance has been one of important applications of data science technology that creates a predictive model by collecting numerous data related to management targeted equipment. It does not predict equipment failure with just one or two signs, but quantifies and models numerous symptoms and historical data of actual failure. Statistical methods were used a lot in the past as this predictive maintenance method, but recently, many machine learning-based methods have been proposed. Such proposed machine learning-based methods are preferable in that they show more accurate prediction performance. However, with the exception of some learning models such as decision tree-based models, it is very difficult to explicitly know the structure of learning models (Black-Box Model) and to explain to what extent certain attributes (features or variables) of the learning model affected the prediction results. To overcome this problem, a recently proposed study is an explainable artificial intelligence (AI). It is a methodology that makes it easy for users to understand and trust the results of machine learning-based learning models. In this paper, we propose an explainable AI method to further enhance the explanatory power of the existing learning model by targeting the previously proposedpredictive model [5] that learned data from a core facility (Hyper Compressor) of a domestic chemical plant that produces polyethylene. The ensemble prediction model, which is a black box model, wasconverted to a white box model using the Explainable AI. The proposed methodology explains the direction of control for the major features in the failure prediction results through the Explainable AI. Through this methodology, it is possible to flexibly replace the timing of maintenance of the machine and supply and demand of parts, and to improve the efficiency of the facility operation through proper pre-control.

설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계 (Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems)

  • 이승
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권6호
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF