• Title/Summary/Keyword: model of computation

Search Result 2,069, Processing Time 0.031 seconds

An Alternative Perspective to Resolve Modelling Uncertainty in Reliability Analysis for D/t Limitation Models of CFST (CFST의 D/t 제한모델들에 대한 신뢰성해석에서 모델링불확실성을 해결하는 선택적 방법)

  • Han, Taek Hee;Kim, Jung Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.409-415
    • /
    • 2015
  • For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.

External Gravity Field in the Korean Peninsula Area (한반도 지역에서의 상층중력장)

  • Jung, Ae Young;Choi, Kwang-Sun;Lee, Young-Cheol;Lee, Jung Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.451-465
    • /
    • 2015
  • The free-air anomalies are computed using a data set from various types of gravity measurements in the Korean Peninsula area. The gravity values extracted from the Earth Gravitational Model 2008 are used in the surrounding region. The upward continuation technique suggested by Dragomir is used in the computation of the external free-air anomalies at various altitudes. The integration radius 10 times the altitude is used in order to keep the accuracy of results and computational resources. The direct geodesic formula developed by Bowring is employed in integration. At the 1-km altitude, the free-air anomalies vary from -41.315 to 189.327 mgal with the standard deviation of 22.612 mgal. At the 3-km altitude, they vary from -36.478 to 156.209 mgal with the standard deviation of 20.641 mgal. At the 1,000-km altitude, they vary from 3.170 to 5.864 mgal with the standard deviation of 0.670 mgal. The predicted free-air anomalies at 3-km altitude are compared to the published free-air anomalies reduced from the airborne gravity measurements at the same altitude. The rms difference is 3.88 mgal. Considering the reported 2.21-mgal airborne gravity cross-over accuracy, this rms difference is not serious. Possible causes in the difference appear to be external free-air anomaly simulation errors in this work and/or the gravity reduction errors of the other. The external gravity field is predicted by adding the external free-air anomaly to the normal gravity computed using the closed form formula for the gravity above and below the surface of the ellipsoid. The predicted external gravity field in this work is expected to reasonably present the real external gravity field. This work seems to be the first structured research on the external free-air anomaly in the Korean Peninsula area, and the external gravity field can be used to improve the accuracy of the inertial navigation system.

Speed-up Techniques for High-Resolution Grid Data Processing in the Early Warning System for Agrometeorological Disaster (농업기상재해 조기경보시스템에서의 고해상도 격자형 자료의 처리 속도 향상 기법)

  • Park, J.H.;Shin, Y.S.;Kim, S.K.;Kang, W.S.;Han, Y.K.;Kim, J.H.;Kim, D.J.;Kim, S.O.;Shim, K.M.;Park, E.W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2017
  • The objective of this study is to enhance the model's speed of estimating weather variables (e.g., minimum/maximum temperature, sunshine hour, PRISM (Parameter-elevation Regression on Independent Slopes Model) based precipitation), which are applied to the Agrometeorological Early Warning System (http://www.agmet.kr). The current process of weather estimation is operated on high-performance multi-core CPUs that have 8 physical cores and 16 logical threads. Nonetheless, the server is not even dedicated to the handling of a single county, indicating that very high overhead is involved in calculating the 10 counties of the Seomjin River Basin. In order to reduce such overhead, several cache and parallelization techniques were used to measure the performance and to check the applicability. Results are as follows: (1) for simple calculations such as Growing Degree Days accumulation, the time required for Input and Output (I/O) is significantly greater than that for calculation, suggesting the need of a technique which reduces disk I/O bottlenecks; (2) when there are many I/O, it is advantageous to distribute them on several servers. However, each server must have a cache for input data so that it does not compete for the same resource; and (3) GPU-based parallel processing method is most suitable for models such as PRISM with large computation loads.

A Study on the Estimation Method of the Repair Rates in Finishing Materials of Domestic Office Buildings (국내 업무시설 건축 마감재의 수선율 산정 방안에 관한 연구)

  • Kim, Sun-Nam;Yoo, Hyun-Seok;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2015
  • Business facilities among domestic architectures have rapidly been constructed along with domestic economic development. It is an important facility taking the second largest proportion next to apartment buildings among current 31 building types of fire department classification of 2012 year for urban architectures. The expected service life of business facilities is 15 years, but 70% of those in urban areas have surpassed the 15 year service life as of the present 2014. Thus, the demand for urgent rehabilitation of such facilities is constantly increasing due to the aging and performance deterioration of the facilities'main finishing materials. Especially, the business facilities are being used for the lease of company office or private office, and such problems as aging and performance deterioration of the facilities could cause less competitive edge for leasing and real estate value depreciation for the O&M (Operation & Management) agent and the owner, respectively. Therefore, an effective planned rehabilitation as a preventive measure according to the standardized repair rate by the number of years after the construction is in need in order to prevent the aging and performance deterioration of the facilities(La et al. 2001). Nonetheless, domestic repair/rehabilitation standards based on the repair rate are mainly limited to apartment buildings and pubic institutions, resulting in impractical application of such standards to business facilities. It has been investigated and analyzed that annual repair rate data for each finishing material are required for examination of the applicability of the repair rate standard for the purpose of establishment of a repair plan. Hence, this study aimed at developing a repair rate computation model for finishing materials of the facilities and verifying the appropriateness of the annual repair rate for each finishing material through a case study after collecting and analyzing the repair history data of six business facilities. The results of this study are expected to contribute to the planning and implementation of more efficient repair/rehabilitation budget by preventing the waste of unpredicted repair cost and opportunity cost for the sake of the business facilities' owners and O&M agents.

Quantification of Myocardial Blood flow using Dynamic N-13 Ammonia PET and factor Analysis (N-13 암모니아 PET 동적영상과 인자분석을 이용한 심근 혈류량 정량화)

  • Choi, Yong;Kim, Joon-Young;Im, Ki-Chun;Kim, Jong-Ho;Woo, Sang-Keun;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.316-326
    • /
    • 1999
  • Purpose: We evaluated the feasibility of extracting pure left ventricular blood pool and myocardial time-activity curves (TACs) and of generating factor images from human dynamic N-13 ammonia PET using factor analysis. The myocardial blood flow (MBF) estimates obtained with factor analysis were compared with those obtained with the user drawn region-of-interest (ROI) method. Materials and Methods: Stress and rest N-13 ammonia cardiac PET imaging was acquired for 23 min in 5 patients with coronary artery disease using GE Advance tomograph. Factor analysis generated physiological TACs and factor images using the normalized TACs from each dixel. Four steps were involved in this algorithm: (a) data preprocessing; (b) principal component analysis; (c) oblique rotation with positivity constraints; (d) factor image computation. Area under curves and MBF estimated using the two compartment N-13 ammonia model were used to validate the accuracy of the factor analysis generated physiological TACs. The MBF estimated by factor analysis was compared to the values estimated by using the ROI method. Results: MBF values obtained by factor analysis were linearly correlated with MBF obtained by the ROI method (slope = 0.84, r = 0.91), Left ventricular blood pool TACs obtained by the two methods agreed well (Area under curve ratio: 1.02 ($0{\sim}1min$), 0.98 ($0{\sim}2min$), 0.86 ($1{\sim}2min$)). Conclusion: The results of this study demonstrates that MBF can be measured accurately and noninvasively with dynamic N-13 ammonia PET imaging and factor analysis. This method is simple and accurate, and can measure MBF without blood sampling, ROI definition or spillover correction.

  • PDF

Topographic Factors Computation in Island: A Comparison of Different Open Source GIS Programs (오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로)

  • Lee, Bora;Lee, Ho-Sang;Lee, Gwang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.903-916
    • /
    • 2021
  • An area's topography refers to the shape of the earth's surface, described by its elevation, slope, and aspect, among other features. The topographical conditions determine energy flowsthat move water and energy from higher to lower elevations, such as how much solar energy will be received and how much wind or rain will affect it. Another common factor, the topographic wetness index (TWI), is a calculation in digital elevation models of the tendency to accumulate water per slope and unit area, and is one of the most widely referenced hydrologic topographic factors, which helps explain the location of forest vegetation. Analyses of topographical factors can be calculated using a geographic information system (GIS) program based on digital elevation model (DEM) data. Recently, a large number of free open source software (FOSS) GIS programs are available and developed for researchers, industries, and governments. FOSS GIS programs provide opportunitiesfor flexible algorithms customized forspecific user needs. The majority of biodiversity in island areas exists at about 20% higher elevations than in land ecosystems, playing an important role in ecological processes and therefore of high ecological value. However, island areas are vulnerable to disturbances and damage, such as through climate change, environmental pollution, development, and human intervention, and lacks systematic investigation due to geographical limitations (e.g. remoteness; difficulty to access). More than 4,000 of Korea's islands are within a few hours of its coast, and 88% are uninhabited, with 52% of them forested. The forest ecosystems of islands have fewer encounters with human interaction than on land, and therefore most of the topographical conditions are formed naturally and affected more directly by weather conditions or the environment. Therefore, the analysis of forest topography in island areas can be done more precisely than on its land counterparts, and therefore has become a major focus of attention in Korea. This study is focused on calculating the performance of different topographical factors using FOSS GIS programs. The test area is the island forests in Korea's south and the DEM of the target area was processed with GRASS GIS and SAGA GIS. The final slopes and TWI maps were produced as comparisons of the differences between topographic factor calculations of each respective FOSS GIS program. Finally, the merits of each FOSS GIS program used to calculate the topographic factors is discussed.

Modification of Trunk Thickness of MIRD phantom Based on the Comparison of Organ Doses with Voxel Phantom (체적소팬텀과의 장기선량 비교를 통한 MIRD팬텀 몸통두께 수정)

  • Lee, Choon-Sik;Park, Sang-Hyun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.199-206
    • /
    • 2003
  • Because the MIRD phantom, the representative mathematical phantom was developed for the calculation of internal radiation dose, and simulated by the simplified mathematical equations for rapid computation, the appropriateness of application to external dose calculation and the closeness to real human body should be justified. This study was intended to modify the MIRD phantom according to the comparison of the organ absorbed doses in the two phantoms exposed to monoenergetic broad parallel photon beams of the energy between 0.05 MeV and 10 MeV. The organ absorbed doses of the MIRD phantom and the Zubal yokel phantom were calculated for AP and PA geometries by MCNP4C, general-purpose Monte Carlo code. The MIRD phantom received higher doses than the Zubal phantom for both AP and PA geometries. Effective dose in PA geometry for 0.05 MeV photon beams showed the difference up to 50%. Anatomical axial views of the two phantoms revealed the thinner trunk thickness of the MIRD phantom than that of the Zubal phantom. To find out the optimal thickness of trunk, the difference of effective doses for 0.5 MeV photon beams for various trunk thickness of the MIRD phantom from 20 cm to 36 cm were compared. The optimal thunk thickness, 24 cm and 28 cm for AP and PA geometries, respectively, showed the minimum difference of effective doses between the two phantoms. The trunk model of the MIRD phantom was modified and the organ doses were recalculated using the modified MIRD phantom. The differences of effective dose for AP and PA geometries reduced to 7.3% and the overestimation of organ doses decreased, too. Because MIRD-type phantoms are easier to be adopted in Monte Carlo calculations and to standardize, the modifications of the MIRD phantom allow us to hold the advantage of MIRD-type phantoms over a voxel phantom and alleviate the anatomical difference and consequent disagreement in dose calculation.

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall (투수성 호안의 해수유통을 고려한 유동 수치모델링)

  • Bang, Ki-Young;Park, Sung Jin;Kim, Sun Ou;Cho, Chang Woo;Kim, Tae In;Song, Yong Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

Improvement in Calculating Engineer Standard Wage Rate and Its Appropriate Level Computation (엔지니어링 노임단가 산출기준 개선방안과 적정 노임단가 추정)

  • Lee, Jae Yul;Lee, Hae Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.853-860
    • /
    • 2022
  • The purpose of this study is to suggest an improvement plan for the calculation method of the engineer standard wage rate (ESWR) and to compute a reasonable ESWR. To this end, an adequacy review of theESWR calculation criteria was conducted along with an extensive engineering industry survey. The survey results were analyzed using an effective response sample of 748 companies out of 1,000 survey samples extracted by stratifying the 5,879 survey population. The main results were as follows. ①When calculating the engineering service fee, the prime contractor's engineer wage is suitable for the ESWR. The ESWR can be estimated by the formula 'average wage÷[1-proportion of subcontract orders×(1-subcontract rate)].' ② The field survey showed that the number of monthly working days was 20.35-20.54 days at 99 % confidence interval, which was significantly different from the current standard (22 days). In addition, as a result of a legal review of the ESWR criteria, it was found that the number of working days should be calculated in accordance with the Labor Standards Act after 2022. ③ Applying government guidelines, the time difference between the wage survey and the ESWR application can be corrected by the past ESWR increase rate for a specific period. ④ Using modeling based on the analysis above, the current ESWR was 13.5-14.5 % lower than the appropriate level. A lower ESWR was driven by the non-reflection of subcontract structure (4.1 %), overestimation of monthly work days (6.8-7.8 %), and application of past wage (2.6 %). The proposed model is expected to be widely used in policy making, as it can provide a useful framework for calculating the standard wage rate in similar industries as well as calculating appropriate engineering fees.