• 제목/요약/키워드: model material technique

검색결과 611건 처리시간 0.028초

모델재를 이용한 회전단조 공정의 시뮬레이션 (Simulation of Rotary Forging Process by Model Material Technique)

  • 윤덕재;최석우;나경환;김종호
    • 소성∙가공
    • /
    • 제4권1호
    • /
    • pp.9-16
    • /
    • 1995
  • Model material technique, which requires only the small space of experimental set-up and low cost for experiment, is used to estimate the deformed profile and the forging load in rotary forging. The materials and working conditions are determined to satisfy the similitude conditions between the model test and the prototype test. The model material of the so-called plasticine and the mild steel are chosen as specimens, and they represent almost the same value of strain gardening exponent in the stress-strain relationship. Lubricant in the model test is also carefully selected so that it gives the same frictional conditions at the tool-specimen interface. Experiments for two kinds of specimens are carried out in each testing equipment at room temperatue. From the experiments the deformed dimensions and the forging loads are measured and compared with each other by using the simulation coefficients. It is shown that there are good agreements between the model test and the prototype test. Finally, for verifying the availability of the model material technique this mathod is applied to forging of bevel gear product. the good result is obained which can demonstrate that the model material technique is very efficent for estimating or developing a new process.

  • PDF

데이터베이스의 영역 특성을 고려한 콘크리트 최적 배합 선정 기법 (Optimum Technique for Concrete Mix-proportion Considering the Region Characteristics of Database)

  • 이방연;김재홍;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.621-624
    • /
    • 2006
  • This paper presents a novel optimum technique for optimum mix-proportion using database-based prediction model of material properties for an object function or a constraint condition. The proposed technique provides high reliability of results introducing effective region model, which assesses whether the prediction model is effective or not, in optimization process. In order to validate the proposed technique, a genetic algorithm was adopted as a optimum technique, and an artificial neural network was adopted as a prediction model for material properties and as a model for assessing effective region. The mix-proportion obtained from the proposed technique is more reasonable than that obtained from a general optimum technique.

  • PDF

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Putty 인상재를 채용한 PVS 인상채득 기법에 관한 연구 (A STUDY OF IMPRESSION TECHNIQUE USING PUTTY MATERIAL OF PVS IMPRESSION MATERIAL)

  • 전영찬;나경수
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.535-543
    • /
    • 1997
  • In order to compare the accuracy of impression technique using the addition silicone putty and improved heavy body material, impression were taken for the natural 6 maxillary anterior teeth, and for the metal mast model that has full arch shape with 4 cylindrical abutment teeth. Marginal gingiva was retracted by routine method using retraction cord, and two techniques were tried to compare the length of impression materials in the gingival sulcus. This was aimed to see the effect of viscosity and hydraulic pressure of impression materials for the subgingival impression. Impressions for the full arch-shaped metal master model were taken to compare the linear stability of the different impression materials and their related techniques. The conclusions were as belows : 1. The one-step impression technique showed longer extension of impression material in gingival sulcus than two-step impression technique. 2. High viscosity and hydraulic pressure of impression material were useful to take subgingival impression. 3. There was no statistically significant difference for the two-dimensional accuracy of impression technique, but two-step technique showed better trend than one-step technique.

  • PDF

그라우팅에 의한 터널 보강효과의 해석적 연구 (A Study on the Tunnel Stability using Grouting Technique)

  • 이종우;이준석;김문겸
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.298-305
    • /
    • 1996
  • Grouting technique is frequently used where a tunnel structure is passing through the shallow overburden area or where the thickness of hard rock above the tunnel is rather thin. However, engineering background on design process of the grout reinforcement does not seem to be fully understood until now. Mechanics of composite material is, therefore, introduced in this study to investigate the orthotropic material properties of the composites containing soil(or rock) and grouting material. These orthotropic material properties can be used to represent the reinfocement effects quantitatively. The model developed in this study is next applied to a typical tunnel structure and the grouting effect is analyzed numerically. The idea used in this study can be expanded to a situation where a pipe roofing or a forepoling technique is adopted and a simplified design procedure, similar to the model model introduced in this study, can be developed.

  • PDF

A Model for Material Handling is an Elevator System

  • Kim, Seung-Nam
    • 한국경영과학회지
    • /
    • 제18권2호
    • /
    • pp.105-130
    • /
    • 1993
  • This study deals with finding a schedule for the movement of a material handling device (elevator) in a manufacturing plant. Two different algorithm (Traveling Salesman Technique and Greedy Algorithm) are used in the scheduling of the elevators using a simulation technique to determine the proper method of scheduling the elevator movement. Based on the simulation analysis, we have found that the Greedy algorithm serves better than the algorithm based on Traveling Salesman technique for scheduling the movement of a material handling device in the manufacturing plant.

  • PDF

개량토 벽면공을 활용한 보강성토사면에 관한 기초적 연구 (A Fundamental Study on Reinforced Soil Slope with Improved Soil Facing)

  • 방인황;서세관;김광렬;김유성
    • 한국지반신소재학회논문집
    • /
    • 제12권4호
    • /
    • pp.35-44
    • /
    • 2013
  • 본 연구에서는 개량토 벽면공을 활용한 보강성토사면의 거동에 대하여 실내모형시험 및 수치해석을 통해 분석하였다. 또한 수해발생현장에 이 연구에서의 방법을 이용하여 시험시공으로 보강성토사면을 구축한 후 약 6개월간 전면변위를 측정하여 실제 거동을 분석하였다. 실내모형시험, 수치해석, 현장시험 등을 통해 개량토 벽면공의 강성은 보강성토사면에서 충분한 벽면공의 역할을 수행할 수 있는 것으로 나타났고, 시험시공 후의 전면변위 측정결과 사면높이에 대한 수평변위의 비율은 최대 약 0.4%로 매우 안정적인 것으로 조사되었다.

최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정 (Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique)

  • 김선용;이두호
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.