• Title/Summary/Keyword: model investigation

Search Result 4,124, Processing Time 0.031 seconds

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Digital Forensics Ontology for Intelligent Crime Investigation System (지능형 범죄수사 시스템을 위한 범용 디지털포렌식 온톨로지)

  • Yun, Han-Kuk;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.161-169
    • /
    • 2014
  • Digital forensics is the process of proving criminal charges by collecting and analyzing digital evidence which is related to the crime in question. Most digital forensic research is focused on digital forensic techniques themselves or cyber crime. In this paper, we designed a digital forensics-criminal investigation linked model in order to effectively apply digital forensics to various types of criminal investigations. Digital forensic ontology was developed based on this model. For more effective application of digital forensics to criminal investigation we derived specific application fields. The ontology has legality rules and adequacy rules, so it can support investigative decision-making. The ontology can be developed into an intelligent criminal investigation system.

Some model misspecification problems for time series: A Monte Carlo investigation

  • Dong-Bin Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.55-67
    • /
    • 1998
  • Recent work by Shin and Sarkar (1996) examines model misspecification problems for nonstationary time series. Shin and Sarkar introduce a general regression model with integrated errors and one system of integrated regressors and discuss the limiting distributions of the OLS estimators and the usual OLS statistics such as $\hat{\sigma^2}$t, DW and $R^2$. We analyze three different model misspecification problems through a Monte Carlo study and investigate each model misspecification problem. Our Monte Carlo experiments show that DW and $R^2$ can be in general used as diagnostic tools to detect spurious regression, misspecification of nonstationary autoregressive and polynomial regression models.

  • PDF

Investigation on Failure Mechanism of Back-to-Back Geosynthethic Reinforced Wall Using Discrete Element Analysis (불연속체 해석을 이용한 Back-to-Back 보강토 옹벽의 파괴 메커니즘에 관한 연구)

  • Yoo, Chung-Sik;Woo, Seung-Je;Jeon, Hun-Min;Shin, Bu-Nam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.55-66
    • /
    • 2011
  • This paper presents the results of an investigation on the failure mechanism of geosynthetic reinforced soil walls in back-to-back configuration using 1-g reduced-scale model tests as well as discrete element method-based numerical investigation. In the 1-g reduced scale model tests, 1/10 scale back-to-back walls were constructed so that the wall can be brought to failure by its own weight and the effect of reinforcement length on the failure mechanism was investigated. In addition, a validated discrete element method-based numerical model was used to further investigate the failure mechanism of back-to-back walls with different boundary conditions. The results were then compared with the failure mechanisms defined in the FHWA design guideline.

The Study on the Extraction of the Distribution Potential Area of Debris Landform Using Fuzzy Set and Bayesian Predictive Discriminate Model (퍼지집합과 베이지안 확률 기법을 이용한 암설사면지형 분포지역 추출에 관한 연구)

  • Wi, Nun-Sol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.105-118
    • /
    • 2017
  • The debris slope landforms which are existent in Korean mountains is generally on the steep slopes and mostly covered by vegetation, it is difficult to investigate the landform. Therefore a scientific method is required to come up with an effective field investigation plan. For this purpose, the use of Remote Sensing and GIS technologies for a spatial analysis is essential. This study has extracted the potential area of debrisslope landform formation using Fuzzy set and Bayesian Predictive Discriminate Model as mathematical data integration methods. The first step was to obtain information about debris locations and their related factors. This information was verified through field investigation and then used to build a database. In the second step, the map that zoning the study area based on the degree of debris formation possibility was generated using two modeling methods, and then cross validation technique was applied. In order to quantitatively analyze the accuracy of two modeling methods, the calculated potential rate of debrisformation within the study area was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). As a result, the prediction accuracy of Fuzzy set model wes 83.1% and Bayesian Predictive Discriminate Model wes 84.9%. It showed that two models are accurate and reliable and can contribute to efficient field investigation and debris landform management.

Extracting the Distribution Potential Area of Debris Landform Using a Fuzzy Set Model (퍼지집합 모델을 이용한 암설지형 분포 가능지 추출 연구)

  • Wi, Nun-Sol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.77-91
    • /
    • 2017
  • Many debris landforms in the mountains of Korea have formed in the periglacial environment during the last glacial stage when the generation of sediments was active. Because these landforms are generally located on steep slopes and mostly covered by vegetation, however, it is difficult to observe and access them through field investigation. A scientific method is required to reduce the survey range before performing field investigation and to save time and cost. For this purpose, the use of remote sensing and GIS technologies is essential. This study has extracted the potential area of debris landform formation using a fuzzy set model as a mathematical data integration method. The first step was to obtain information about the location of debris landforms and their related factors. This information was verified through field observation and then used to build a database. In the second step, we conducted the fuzzy set modeling to generate a map, which classified the study area based on the possibility of debris formation. We then applied a cross-validation technique in order to evaluate the map. For a quantitative analysis, the calculated potential rate of debris formation was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). The prediction accuracy of the model was found to be 83.1%. We posit that the model is accurate and reliable enough to contribute to efficient field investigation and debris landform management.

Construction of a Preliminary Conceptual Site Model Based on a Site Investigation Report for Area of Concerns about Groundwater Contamination (지하수 오염우려지역 실태조사 보고서 기반의 사전 부지개념모델 구축)

  • Kim, Juhee;Bae, Min Seo;Kwon, Man Jae;Jo, Ho Young;Lee, Soonjae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.64-74
    • /
    • 2022
  • The conceptual site model (CSM) is used as a key tool to support decision making in risk based management of contaminated sites. In this work, CSM was applied in Jeonju Industrial Complex where site investigation for groundwater contamination was conducted. Site background information including facility types, physical conditions, contaminants spill history, receptor exposure, and ecological information were collected and cross-checked with tabulated checklist necessary for CSM application. The CSM for contaminants migration utilized DNAPL transport model and narrative CSMs were constructed for source to receptor pathway, ecological exposure route, and contaminants fate and transport in the form of a diagram or flowchart. The component and uncertainty of preliminary CSM were reviewed using the data gap analysis while taking into account the purpose of the survey and the site management stage at the time of the survey. Through this approach, the potential utility of CSM was demonstrated in the site management process, such as assessing site conditions and planning follow-up survey work.

Construction of Hydrogeological Model for KURT Site Based on Geological Model (KURT 연구지역에서 지질모델을 이용한 수리지질모델의 구축)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • The KURT (KAERI Underground Research Tunnel) is a research tunnel which is located in KAERI (Korea Atomic Energy Research Institute) site. At KURT, researches on engineering and natural barrier system, which are the most important components for geological disposal system for high level radioactive waste, have been conducted. In this study, we synthesized the site characteristics obtained by various types of site investigation to introduce the geological model for KURT site, and induced the 3-D hydrogeological model for KURT site from the geological model. From the geological investigation at the surface and boreholes, four geological elements such as subsurface weathered zone, upper fractured rock, lower fractured rock and fracture zones were determined for the geological model. In addition, the geometries of these geological elements were also analyzed for the geological model to be three-dimensional. The results from 3-D geological model were used to construct the hydro-geological model for KURT site, which is one of the input data for groundwater flow modeling and safety assessment.