DOI QR코드

DOI QR Code

Investigation on Failure Mechanism of Back-to-Back Geosynthethic Reinforced Wall Using Discrete Element Analysis

불연속체 해석을 이용한 Back-to-Back 보강토 옹벽의 파괴 메커니즘에 관한 연구

  • 유충식 (성균관대학교 사회환경시스템학과) ;
  • 우승제 (성균관대학교 초고층장대교량학과) ;
  • 전훈민 (성균관대학교 사회환경시스템학과) ;
  • 신부남 (성균관대학교 사회환경시스템학과)
  • Received : 2011.04.21
  • Accepted : 2011.06.25
  • Published : 2011.06.30

Abstract

This paper presents the results of an investigation on the failure mechanism of geosynthetic reinforced soil walls in back-to-back configuration using 1-g reduced-scale model tests as well as discrete element method-based numerical investigation. In the 1-g reduced scale model tests, 1/10 scale back-to-back walls were constructed so that the wall can be brought to failure by its own weight and the effect of reinforcement length on the failure mechanism was investigated. In addition, a validated discrete element method-based numerical model was used to further investigate the failure mechanism of back-to-back walls with different boundary conditions. The results were then compared with the failure mechanisms defined in the FHWA design guideline.

본 논문에서는 Back-to-Back(BTB) 보강토 옹벽의 파괴메커니즘에 관한 연구내용을 다루었다. 이를 위해 모형실험과 불연속체 해석(Discrete Element Method, DEM)을 도입한 수치해석을 수행하였다. 먼저 축소모형실험에서는 일반적으로 시공되는 Back-to-Back 보강토 옹벽을 1/10로 축소하여 1-g 모델을 구축한 후 자중만으로 파괴에 도달하도록 하였으며 보강재의 길이변화에 따른 파괴 메커니즘을 고찰하였다. 아울러 모형실험 결과를 토대로 검증된 DEM 해석모델을 이용하여 다양한 시공조건에 대한 해석을 수행하여 BTB 옹벽의 폭 및 보강재 길이에 따른 파괴 메커니즘을 고찰하고 그 결과를 현재 적용되는 FHWA 설계기준과 비교하였다.

Keywords

References

  1. 유충식, 김선빈 (2008), "Back-to-Back 보강토 옹벽의 하중지지 특성", 한국지반공학회논문집, 제24권, 제12호, pp. 41-52.
  2. 유충식, 정혜영, 송아란 (2005), "계단식 보강토 옹벽의 거동에 관한 수치 해석적 연구", 한국지반공학회 논문집, 제21권, 제10호, pp.49-60.
  3. Bonaparte, R. and Marguson, E. (1984), "Repaire of landslides in the San Francisco Bay Area", Proc. Symp. on Polymer Grid Reinforcements in Civil engineering, London Paper No.2.4.
  4. Busbridge, J.R. (1984), "Stabilization of C.P. rail slip at Waterdown, Ontario, using tensar grid", Proc. Symp. on Polymer Grid Reinforcements in Civil engineering, London Paper No.2.
  5. Chareyre, B. and Villard, P. (2003), "Discrete element modeling of curved geosynthetic anchorages with known macro-properties", Numerical modeling in micromechanics via particle method, pp.197-204.
  6. Cho, N., Martin, C.D., Sego, D.C. and Christiansson, R. (2007), "A Clumped Particle Model for Rock", International Journal of Rock Mechanics & Mining Science, Vol.44, No.7, pp.997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  7. Dolezalova, M., Czene, P. and Havel, F. (2003), "Micromechanical modeling of stress path effects using pfc2d code", Numerical modeling in micromechanics via particle method, pp.173-182.
  8. Itasca Consulting Group, Inc. (2004), PFC2D User's Guide & Fish in PFC2D, Minneapolis, Minnesota, Itasca Cons. Group.
  9. Kapurapu, R. and Bathurst, R.J. (1995), "Behavior of Geosynthetic Reinforced Soil Retaining Walls Using the Finite Element Analysis", Computers and Geotchnics, Vol.17, pp.179-299.
  10. Rowe, R.K. and Ho, S.K. (1997), "Continuous Panel Reinforced Soil Walls on Rigid Foundations", Jounal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.10, pp.912-920. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:10(912)
  11. Ryan R.B., Barry R.C. and Naresh C.S. (2009), Mechanically Stabilized Earth Walls and Reinforced Soil Slopes-Volume 1, FHWA-NHI-10-024, National Highway Institute FHWA, Washington, DC.
  12. Yoo, C. and Jung, H.S. (2004), "Measured behavior of a geosynthetic-reinforced segmental retaining wall in a tiered configuration", Geotextiles and Geomembranes, Vol.22, pp.359-376. https://doi.org/10.1016/S0266-1144(03)00064-5
  13. Yoo, C. and Kim, S.B. (2008), "Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: Full-scale load test and 3D finite element analysis", Geotextiles and Geomembranes, Vol.26, pp.460-472. https://doi.org/10.1016/j.geotexmem.2008.05.008