• Title/Summary/Keyword: model errors

Search Result 3,127, Processing Time 0.032 seconds

An Analysis of Relationship between Unsafe Acts and Human Errors of Workers for Construction Accident Prevention (건설사고 예방을 위한 근로자의 불안전한 행동과 휴먼에러와의 관계 분석)

  • Min, Kwangho;Cha, Yongwoon;Han, Sangwon;Hyun, Changtaek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.161-168
    • /
    • 2019
  • Construction industry is becoming more advanced, but safety accidents are not decreasing and unsafe act (UA) and human errors (HE) are the main causes of safety accidents. Therefore, this study aims to analyze the relationships between unsafe acts and human errors for construction accident prevents. Specifically, the Correlation Analysis is used to quantify 24 combinations of the relationship between the UA and HE. Then, the Kano Model, and Timko Satisfied Coefficient was utilized to find 6 combinations for construction accident prevention plans. As the result of Timko Satisfied Coefficient, an interview was conducted with three safety managers and 6 safety prevention plan is proposed. Through these results, it is expected that the combination of 24 accidents will be basic data of safety management. Especially, the proposed safety prevention plans considering the characteristics of 6 combinations with high correlation can contribute to prevention of safety accidents at the construction site.

A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region (한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발)

  • Yoon, Moonseok;Ahn, Jongsun;Joo, Jung -Min
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • Ionosphere, one of the largest error sources, can pose potentially harmful threat to single-frequency GNSS (global navigation satellite system) user even after applying ionospheric corrections to their GNSS measurements. To quantitatively assess ionospheric impacts on the satellite navigation-based applications using simulation, the standard deviation of residual ionospheric errors is needed. Thus, in this paper, we determine conservative statistical quantity that covers typical residual ionospheric errors for nominal days. Extensive data-processing computes TEC (total electron content) estimates from GNSS measurements collected from the Korean reference station networks. We use Klobuchar model as a correction to calculate residual ionospheric errors from TEC (total electron content) estimate. Finally, an exponential delay model for residual ionospheric errors is presented as a function of local time and satellite elevation angle.

Formulation of the Neural Network for Implicit Constitutive Model (I) : Application to Implicit Vioscoplastic Model

  • Lee, Joon-Seong;Lee, Ho-Jeong;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviors of materials. The fatal problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural networks. In their modeling, inelastic material behaviors are generalized in a state space representation and the state space form is constructed by a neural network using input-output data sets. A technique to extract the input-output data from experimental data is also described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit models in accuracy.

A Comparison of CME Arrival Time Estimations by the WSA/ENLIL Cone Model and an Empirical Model

  • Jang, Soo-Jeong;Moon, Yong-Jae;Lee, Kyoung-Sun;Na, Hyeon-Ock
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.92.1-92.1
    • /
    • 2012
  • In this work we have examined the performance of the WSA/ENLIL cone model provided by Community Coordinated Modeling Center (CCMC). The WSA/ENLIL model simulates the propagation of coronal mass ejections (CMEs) from the Sun into the heliosphere. We estimate the shock arrival times at the Earth using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. We make a comparison between CME arrival times by the WSA/ENLIL cone model and IP shock observations. For the WSA/ENLIL cone model, the root mean square(RMS) error is about 13 hours and the mean absolute error(MAE) is approximately 10.4 hours. We compared these estimates with those of the empirical model by Kim et al.(2007). For the empirical model, the RMS and MAE errors are about 10.2 hours and 8.7 hours, respectively. We are investigating several possibilities on relatively large errors of the WSA/ENLIL cone model, which may be caused by cone model velocities, CME density enhancement factor, or CME-CME interaction.

  • PDF

Correction of One-layer Solar Radiation Model by Multi-layer Line-by-line Solar Radiation Model (다층 상세 태양복사 모델에 의한 단층 태양복사 모델의 보정)

  • Jee, Joon-Bum;Lee, Won-Hak;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.151-162
    • /
    • 2011
  • One-layer solar radiation(GWNU; Gangneung-Wonju National University) model is developed in order to resolve the lack of vertical observations and fast calculation with high resolution. GWNU model is based on IQBAL(Iqbal, 1983) and NREL(National Renewable Energy Laboratory) methods and corrected by precise multi-layer LBL(Line-by-line) model. Input data were used 42 atmospheric profiles from Garand et al.(2001) for calculation of global radiation by the Multi-layer and one-layer solar radiation models. GWNU model has error of about -0.10% compared with LBL model while IQBAL and NREL models have errors of about -3.92 and -2.57%, respectively. Global solar radiation was calculated by corrected GWNU solar model with satellites(MODIS, OMI and MTSAT-1R), RDPS model prediction data in Korea peninsula in 2009, and the results were compared to surface solar radiation observed by 22 KMA solar sites. All models have correlation($R^2$) of 0.91 with the observed hourly solar radiation, and root mean square errors of IQBAL, NREL and GWNU models are 69.16, 69.74 and $67.53W/m^2$, respectively.

Development of a Ship's Logbook Data Extraction Model Using OCR Program (OCR 프로그램을 활용한 선박 항해일지 데이터 추출 모델 개발)

  • Dain Lee;Sung-Cheol Kim;Ik-Hyun Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.97-107
    • /
    • 2024
  • Despite the rapid advancement in image recognition technology, achieving perfect digitization of tabular documents and handwritten documents still challenges. The purpose of this study is to improve the accuracy of digitizing the logbook by correcting errors by utilizing associated rules considered during logbook entries. Through this, it is expected to enhance the accuracy and reliability of data extracted from logbook through OCR programs. This model is to improve the accuracy of digitizing the logbook of the training ship "Saenuri" at the Mokpo Maritime University by correcting errors identified after Optical Character Recognition (OCR) program recognition. The model identified and corrected errors by utilizing associated rules considered during logbook entries. To evaluate the effect of model, the data before and after correction were divided by features, and comparisons were made between the same sailing number and the same feature. Using this model, approximately 10.6% of errors out of the total estimated error rate of about 11.8% were identified, and 56 out of 123 errors were corrected. A limitation of this study is that it only focuses on information from Dist.Run to Stand Course sections of the logbook, which contain navigational information. Future research will aim to correct more information from the logbook, including weather information, to overcome this limitation.

Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools (공작기계 원점 열변형오차의 모델링 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

Error Forecasting & Optimal Stopping Rule under Decreasing Failure Rate (감소(減少)하는 고장률(故障率)하에서 오류예측 및 테스트 시간(時間)의 최적화(最適化)에 관한 연구(硏究))

  • Choe, Myeong-Ho;Yun, Deok-Gyun
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • This paper is concerned with forecasting the existing number of errors in the computer software and optimizing the stopping time of the software test based upon the forecasted number of errors. The most commonly used models have assessed software reliability under the assumption that the software failure late is proportional to the current fault content of the software but invariant to time since software faults are independents of others and equally likely to cause a failure during testing. In practice, it has been observed that in many situations, the failure rate decrease. Hence, this paper proposes a mathematical model to describe testing situations where the failure rate of software limearly decreases proportional to testing time. The least square method is used to estimate parameters of the mathematical model. A cost model to optimize the software testing time is also proposed. In this cost mode two cost factors are considered. The first cost is to test execution cost directly proportional to test time and the second cost is the failure cost incurred after delivery of the software to user. The failure cost is assumed to be proportional to the number of errors remained in the software at the test stopping time. The optimal stopping time is determined to minimize the total cost, which is the sum of test execution cast and the failure cost. A numerical example is solved to illustrate the proposed procedure.

  • PDF

The Influence of the Number of Electrodes, the Position and Direction of a Single Dipole on the Relation Between S/N ratio and EEG Dipole Source Estimation Errors (뇌전위의 단일 쌍극자 모델에서 전극의 개수, 쌍극자의 위치 및 방향이 S/N과 쌍극자 추정 오차사이의 관계에 미치는 영향에 관한 시뮬레이션 연구)

  • 김동우;배병훈
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 1994
  • In the source localization using single dipole model, the influence of the number of electrodes, the position and direction of a single dipole on the relation between S/W ratio and dipole parameter estimation errors is important. Monte Carlo simulation was used to investigate this influence. The forward problem was calculated using three spherical shell model, and dipole parameters were optimized by means of simplex method. As the number of electrodes became large, as the dipole went from midbrain to cortex, and as the direction of dipole changed from radial to tangential, the average and standard deviation of estimation errors became small.

  • PDF

Efficient Prediction in the Semi-parametric Non-linear Mixed effect Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.225-234
    • /
    • 1999
  • We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.

  • PDF