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Abstract 
Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviors of materials. The fatal 
problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is 
written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model 
using neural networks. In their modeling, inelastic material behaviors are generalized in a state space representation and the state space form 
is constructed by a neural network using input-output data sets. A technique to extract the input-output data from experimental data is also 
described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and 
was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible 
amount of model errors indicating its superiority to all the existing explicit models in accuracy. 
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1. Introduction 
 
There has been an accelerating rate at which various solids 

and structures were developed to assist the objective of 
industrial designers. Because of the complexity of material 
behavior, a great number of inelastic constitutive models have 
been developed accordingly[1-3]. Inelastic material models 
proposed so far can be classified into two types[4]. In the first 
type, the model is expressed only in terms of observable 
variables, although it is limited in its descriptive ability[5]. The 
second type of model has not only observable variables but also 
variables representing material internal behaviors[6-8]. 

The significant problem involved with such models is 
however that the models contain errors inevitably, as they are 
based on simple phenomenological investigations of material 
properties while real behaviors of material are very complex. 
Up to now, researchers rather have attempted to overcome this 
problem by either introducing higher-performance models or 
better parameter identification techniques [9-11]. However, 
they do not tackle the substance of the problem since any 
model is limited by the capability of their mathematical 
description, i.e., the model is written explicitly.  

Therefore, in this paper, the authors first define the implicit 
constitutive model in contrast to all conventional constitutive 
models, and then propose an implicit viscoplastic model using 
neural networks based on the state space method.  

The state space representation of the proposed technique 
enables the description of dynamical or viscoplastic behaviors 
of materials, and the use of neural networks as a universal 
function approximator allows us to simulate the behaviors 

accurately. 
 
 

2. Multilayer Neural Network 
 
The multilayer feedforward neural network has been proven 

rigorously to be a universal function approximator for any 
bounded square integral function of many variables[12]. 
Mathematically consider a function ψ : X ⊆ Rn → Y ⊆ 
Rm, from a bounded subset of Rn to a bounded subset ψ(X) of 
Rm where the function is unknown but is assumed to be in L2. 
Given sufficient input-output data [xj, ψ(xj)], often called as 
training patterns or training data, the neural network, as an 
approximation function, : X  ⊆ Rn →  Y ⊆ Rm, ⊆ Rn is 
determined by the well-known backpropagation algorithm as if 
the objective function  

 ∑ Ψ−Ψ
Ψ i

ii XX
2^

)()(min   (1) 

was achieved where n
i RX ∈  is the input to the function. The 

network is then used for feedforward computation with various 
inputs. Such training of the network is normally depicted by the 
block diagram shown in Fig. 1. 

The schematic diagram of the internal structure of the neural 
network is shown in Fig. 2.  The network consists of the input 
layer, hidden layers and output layer, each having a number of 
units, depicted as circles. Each unit is connected to units in the 
neighboring layer with a weight, shown as a line in the figure. 
The actual neural network is thus parameterized by a set of 
weights W, and in conventional backpropagation training, the 
objective substantially turns out to be:  

 Manuscript received Dec. 26, 2008; revised Sep. 7, 2009. 
Corresponding author: jslee1@kyonggi.ac.kr 



 

 

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 3, September 2009 

192 

 

 

 
2

00
^

)(),(min∑ Ψ−Ψ
iW

XWX ,  (2) 

Where X0=Xi is the input to the network while 
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K RYX ∈=  is the output, represented by a 

K layer network. 
 

 
Fig. 1 Training of neural network 

 

 
Fig. 2 Multilayer feedforward neural network 

 
 

3. Material Models 
 
Plastic deformations can occur only when certain 

combinations of stresses defined by the yield condition are 
reached. The coefficients appearing with the stress and strain 
components in the constitutive equations for plastic materials 
are not material constants; they depend upon the instantaneous 
state of stress or strain. The plastic deformations accumulate 
during the loading process. They are path-dependent, but do not 
depend on time. 

Viscous deformations can occur at any level of stress. The 
coefficients appearing with the stress and strain components in 
the constitutive equations of viscous materials are material 
constants: they do not depend upon the instantaneous state of 
stress or strain. The development of viscous deformation is a 
function of time; hence, viscous materials are time-dependent. 
An important phenomenon of viscous materials is that they 
display greater resistance against deformations with higher 
rates. In addition, viscous deformations development at a 
constant state of stress and the stresses change at a constant 
state of strain. In both cases, the time variation is strains and 
stresses are uniquely defined by the viscous constitutive 
equations. 

 In the unified theory capable of describing cyclic loading 

and viscous behavior[3], the time-dependent effect is unified 
with the plastic deformations as a viscoplastic term, i.e.,  

 ,pepe νν εεεεεε +=++=   (1)  

where εν and ενp represent the viscous and viscoplastic 
strains respectively.   

Chaboche's model [2], a popular viscoplastic model, uses 
this flow rule and, under stationary temperature condition, has 
the form together with the kinematic and isotropic hardening 
rules:  

 ),sgn( χσ
χσ

εν −
−−

=
n

p

K
R   (2a) 

 ,pp DH νν εχεχ −=   (2b) 

 ,pp dRhR νν εε −=   (2c)  

where K, n, H, D, h, d are material parameters and the notation 
becomes zero if the value inside is negative. The dynamics 

of the equations can be uniquely specified by giving the initial 
conditions of the variables:  

 ,0
0

pp

t

νν
εε =

=

  (3a) 

 ,00 χχ =
=t

  (3b) 

 .00 RR t =
=

  (3c) 

In the case of reverse cyclic loading with constant strain 
limits and rates as shown in Fig. 3(a), which is of concern in 
the paper, we know the initial condition of strain  

 .00 εε =
=t

  (4) 

and the strain rate 
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These first allow us to know the time history of strain ε 
iteratively 

 .1 kkk t εεε ⋅Δ+=+  (6) 

The initial stress is thus derived from Eqs. (3) and (4)  

 .)( 000
p

t
E νεεσ −=

=
  (7) 

The next states of the viscoplastic strain, back stress and drag 
stress, and their next state can be then derived after their rate of 
change has been computed by Eqs. (8):  

 p
k

p
k

p
k t ννν εεε ⋅Δ+=+1   (8a) 

 kkk t χχχ ⋅Δ+=+1   (8b) 

 kkk RtRR ⋅Δ+=+1   (8c) 
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(a) stress-time data 

 

 
(b) stress-strain data 

Fig. 3 Reverse cyclic loading test 
 
We can also derive the next state of stress σk+1 through Eqs. 

(6) and (8a):  

 )( 111
p

kkk E νεεσ +++ −=   (9) 

and the repetition of Eqs. (8) and (9) enables us to carry out the 
whole computer simulation.  The stress-strain curve, general 
input-output data used to show the performance of material 
constitutive models is shown in Fig. 3(b).   

Chaboche's model explained here is suited for inelastic 
material characteristics in a wide range as one of the best 
models although is not very appropriate to describe the tensile 
behavior.  

 
 

4. Neural Constitutive Modeling 
 

4.1 Explicit and Implicit Constitutive Models 
Having a look at conventional constitutive models described 

in the last section, we can define explicit and implicit 
constitutive models as follows:   

 
Definition - Explicit constitutive models  

 
Let x and a be a set of variables and material parameters 

respectively and φ the model equations. Note here that x 
includes both the input and output variables. In the case of 
material models, input variables are viscoplastic strain ενp 

and material internal variables ξ, and the output variable is 
σ. Explicit constitutive models are then given by  

 φ(x; a)=0, (10)  

where ΦT = [ενP  ξT] has an explicit expression.   

Definition - Implicit constitutive models  
 
In implicit constitutive models, model equations φ ideally 

has no explicit expressions:  

  φ(x) = 0,  (11) 

thus containing no material parameters. Implicit constitutive 
models are henceforth constructed only from the input-output 
data without any analytical investigations.   

Conclusively, the advantage of explicit constitutive models 
is that they can be easily developed if their mechanics are clear. 
On the other hand, implicit constitutive models have their 
potential if their mechanics are unknown but input-output data 
are obtainable.  

 
4.2 State Space Representation of Viscoplastic Models 

The idea of state space comes from the state-variable method 
of describing differential equations. In this method, dynamical 
systems are described by a set of first-order differential 
equations in variables called the "state", and the solution may 
be visualized as a trajectory in space. The method is 
particularly well suited to performing calculations by computer.  

Use of the state-space approach has often been referred to as 
modern control theory[13], whereas use of transfer-function 
based methods such as root locus and frequency response have 
been referred to as classical control design. Advantage of state-
space design are especially apparent when engineers design 
controllers for systems with more than one control input or 
more than one sensed output. A further advantage of state-
space design is that the system representation provides a 
complete internal description of the system, including possible 
internal oscillations or instabilities that might be hidden by 
inappropriate cancellations in the transfer-function (input/ 
output) description.  

The motion of any finite dynamic system can be expressed 
as a set of first-order ordinary differential equations. This is 
often referred to as the state-variable representation. In general, 
a nonlinear dynamic system is given by  

 ẋ = ψ (x, u : a)  (12a)  

with initial conditions :  

 x|t=0 = x0  (12b) 

where x ∈ Rn is a set of n state variables and u ∈ Rr, known for 
all t is a set of r control inputs. ψ : Rn × Rr  → Rn is assumed to 
be continuously differentiable with respect to each of its 
arguments.  

In sanction with the state space method, so as to describe 
dynamics or viscoplasticity in constitutive models, explicit 
models are thus defined with the explicit equations ψ : 

 ẋ = ψ (x, u : a)  (13) 

Meanwhile, implicit viscoplastic constitutive models are 
expressed with implicit mapping ψ : 

 ẋ = ψ (x, u)  (14) 
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4.3 Generalization of Viscoplastic Constitutive Models and 
Neural Network Constitutive Models 

The state space representation of viscoplastic models 
described in the last section renders us possible to construct the 
viscoplastic constitutive models in a general fashion.  Let the 
viscoplastic strain, internal variables, stress and material 
parameters be ενp, ξ, σ and a respectively, the 
generalized form of explicit constitutive model may be written 
as  

 ),;,,(ˆ appp σξεεε ννν =   (15a) 

 .);,,(ˆ app
σξεξξ νν

=   (15b) 

It can be seen that a number of existing explicit models have 
similar representations. The generalized implicit constitutive 
model can thus have the form:  

 ),,,(ˆ σξεεε ννν ppp =   (16a) 

 .),,(ˆ σξεξξ νν pp=   (16b) 

Note here that internal variables can be the back and drag 
stresses or anything else, depending on material behavior to be 
described.   

Considering the state space method, we can find that the 
viscoplastic strain and internal material variables correspond to 
the state variables whereas the stress acts as a control 
input.  The dynamics of the models can be hence uniquely 
specified by giving the initial conditions of the state variables:   

 ,00

p

t

p νν εε =
=

  (17a)  

  ,00
ξξ =

=t
  (17b)  

and the control input σ  for all t. The viscoplastic strain and 
internal variables can be simulated through the discretised 
integration scheme:  

 ,1
p

k
p

k
p

k t ννν εεε ⋅Δ+=+
  (18a) 

 .1 kkk t ξξξ ⋅Δ+=+
  (18b) 

Control inputs of dynamical systems should be known for all 
t a priori, normally being independent of the state variables, 
but the control input of the viscoplastic material is the stress 
and is therefore derived from the state variables iteratively, i.e., 
the next state of stress σk+1 can be derived from the current 
stress σk, first computing the initial stress:  

 ),( 000
p

t E νεεσ −=
=

  (19a) 

 .)(1 kk σσ Φ=+
  (19b) 

The derivation of σk+1 is explained in Section 3.2. In 
accordance to the fact that state space forms in various 
applications have been successfully learned by neural networks, 
we propose a neural network constitutive model where the 
neural network learns the mapping  pνε

^
• and ^

•
ξ .  The 

architecture of the proposed model is shown in Fig. 4.  The 

model inputs the current viscoplastic strain, internal variables 
and stress, outputting the current rate of change of viscoplastic 
strain and internal variables. As an example, if two internal 
variables of back and drag stresses are chosen as in Chaboche's 
model, the proposed model is composed of four inputs and 
three outputs. The block diagram for training the model is 
illustrated in Fig. 5.  

 

 
Fig. 4 Proposed neural network constitutive model 

 

 
Fig. 5 Training of the proposed model 

 
 

5. Examples 
 
The performance of the proposed neural network is 

investigated using pseudo-experimental data created by 
computer. As an example, the neural network was determined 
to use tow internal variables, the back stress Y and the isotropic 
hardening variable R, which are used in Chaboche’s model. 
The network hence is composed of four inputs and three 
outputs as depicted in Fig. 6. 

 

 
Fig. 6 Neural network architecture with back and drag stresses   

 
The model used to create the pseudo-experimental data was 
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Chaboche’s model as well. Hence the same internal variables 
were used, and thus we can directly investigate the 
performance of the network to learn each model equation. 

Material parameters used to create training and validation 
data are listed in Table 1. The number of training were 307, and 
they were regularly taken from the first five cycles of a reverse 
cyclic loading test with a constant strain rate, parameters of 
which are listed in Table 2. Each validation data was plotted in 
the center of two neighboring training data. The stress-strain 
representation of the training data and validation data is 
indicated in Fig. 7, while Figs. 8 and 9 show the strain and 
stress training data with respect to time respectively. Two 
hidden layers each with six units were placed between the input 
and output layers.  

 
Table 1. Material parameters to create training and validation 
data 

K n H D h R0 d 

50 3 5,000 100 300 50 0.6 

 
Table 2. Parameters of the reverse cyclic loading test 

εmax % |ε̇|s-1 No. of training sets No. of validation sets 

0.036 5,000 307 306 

 

 
Fig. 7 Stress-strain curve of training and validation data for the 

constitutive neural network  
 

 
Fig. 8 Strain data for training the constitutive neural network 
 

 
Fig. 9 Stress data for training the constitutive neural network 
 
The error development of the training and validation sets 

until 10,000 trainings is shown in Fig. 10. Clearly, the error is 
approaching to zero, indicating that the neural network is 
learning the material law.  

 

 
Fig. 10 Error development of training and validation data 

 
Now that we found the proposed network could reproduce 

the training data, we will investigate the interpolative and 
extrapolative of the network. Also, with strain range ±0.025%, 
we found that the neural network have a good agreement with 
the exact curve in the previous study[14]. 

A similar material behavior to the exact curve by Chavoche’s 
model is also obtained ±0.040%, as shown in Figs. 11-13, 
though the range exceeds that of the training data. This result 
indicates that the neural network can create a curve similar to 
the exact curve extrapolatively is the extrapolation is adjacent. 
However, the peak of the second cycle of back stress shows 
large errors, indicating that there is no guarantee in 
extrapolation. 
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Fig. 11 Exact stress-strain curve and curve created by neural 

network (Maximum strain range: 0.04%) 
 

 
Fig. 12 Exact strain curve and curve by neural network 

(Maximum strain range: 0.04%) 
 

 
Fig. 13 Exact stress curves and curves created by neural 

network (Maximum strain range: 0.04%) 
 
 

6. Conclusions 
 
The implicit constitutive model has been defined and an 

implicit viscoplastic model using neural networks has been 
proposed in this paper. The proposed model, based on the state 
space method, has the inputs of the current viscoplastic strain, 
internal variables and stress and the outputs of the current rates 

of change of the viscoplastic strain and material internal 
variables.   

The proposed model was trained using input-output data 
generated from Chaboche's model, and could reproduce the 
original stress-strain curve. In addition, the model demonstrated 
the ability of interpolation by generating untrained curves. It 
was also found that the model can extrapolate in close 
proximity to the training data although it is not extrapolatively 
precise to a large extent.  Therefore, the proposed model can 
replace Chaboche's model completely by its interpolative 
capability if a variety of training data with different conditions 
are used.  
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