• Title/Summary/Keyword: model concrete

Search Result 5,283, Processing Time 0.028 seconds

Development of a Theoretical Model for STEAM Education (융합인재교육(STEAM)을 위한 이론적 모형의 제안)

  • Kim, Sung-Won;Chung, Young-Lan;Woo, Ae-Ja;Lee, Hyun-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.2
    • /
    • pp.388-401
    • /
    • 2012
  • This study attempted to propose a theoretical model for STEAM education, entitled to the Ewha-STEAM education model, which could provide more concrete guidelines for science educators and curriculum developers to execute STEAM ideas. We identified key knowledge and key competencies to nurture future creative/convergent human resources. Key knowledge included an understanding of core ideas cutting across traditional disciplinary boundaries as well as the nature of different disciplines. And additionally, key competencies implied such abilities as to explore the scientific world, to resolve problems, and to communicate and collaborate with others. We also added creativity and character as an essential part of key competencies. In order to provide more specific guidelines when developing, implementing, and evaluating STEAM curriculum, we suggested three elements of convergence to consider: 1) unit of convergence (i.e. concept/skills, problem/phenomenon, activity), 2) degree of convergence (i.e. multi-disciplinary, inter-disciplinary, extra-disciplinary), and 3) context of convergence (i.e. personal, societal, global). It is expected that the Ewha-STEAM education model would contribute towards diverse education communities understanding the direction of STEAM education and its educational potentials.

The Effectiveness of Metacognitive Instruction Model on the Changes of Molecular Concepts (초인지 수업모형이 초등학생들의 분자개념 변화에 미치는 효과)

  • 신미경;고영신;최영재
    • Journal of Korean Elementary Science Education
    • /
    • v.18 no.2
    • /
    • pp.65-77
    • /
    • 1999
  • The purpose of this study was to find out the effectiveness of metacognitive instruction model on the changes of science concepts, when it was applied to 6th grade students. To do this, students were tested with the achievement of molecules and molecular motion concepts and metacognitive self-regulation test as a pretest Based upon metacognitive instruction model and student's conception, instruction program were developed. This metacognitive strategy Program was applied to the experimental group and expository teaching was applied to the comparison group (followed the order and method in authorized science textbook and teachers handbook). When planned lessons were finished, students were given a post-test to find conceptual change. After six months students were given a test again to find retention effect. There was a significant difference in conceptual change and retention between comparison group and experimental group by treatment at p< .05 level, The difference between comparison group and experimental group was especially significant, when the situation of test item wasn't similar to that of the textbook Metacognitive instruction model was more effective to high group than low group in metacognitive self-regulation level on conceptual change and retention. So the metacognitive strategy Played an important role in conceptual change and retention. And we can recognize that the students who take part in the metacognitive lesson can apply the corrected concept to the other concrete situation because they can understand new concept accurately by metacognitive strategies. And we can guess that high group in metacognitive self-regulation level can team metacognitive strategy easily but relatively low group student have some trouble in learning new strategy.

  • PDF

An evaluation methodology for cement concrete lining crack segmentation deep learning model (콘크리트 라이닝 균열 분할 딥러닝 모델 평가 방법)

  • Ham, Sangwoo;Bae, Soohyeon;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.513-524
    • /
    • 2022
  • Recently, detecting damages of civil infrastructures from digital images using deep learning technology became a very popular research topic. In order to adapt those methodologies to the field, it is essential to explain robustness of deep learning models. Our research points out that the existing pixel-based deep learning model evaluation metrics are not sufficient for detecting cracks since cracks have linear appearance, and proposes a new evaluation methodology to explain crack segmentation deep learning model more rationally. Specifically, we design, implement and validate a methodology to generate tolerance buffer alongside skeletonized ground truth data and prediction results to consider overall similarity of topology of the ground truth and the prediction rather than pixel-wise accuracy. We could overcome over-estimation or under-estimation problem of crack segmentation model evaluation through using our methodology, and we expect that our methodology can explain crack segmentation deep learning models better.

The Effects of Road Geometry on the Injury Severity of Expressway Traffic Accident Depending on Weather Conditions (도로기하구조가 기상상태에 따라 고속도로 교통사고 심각도에 미치는 영향 분석)

  • Park, Su Jin;Kho, Seung-Young;Park, Ho-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.12-28
    • /
    • 2019
  • Road geometry is one of the many factors that cause crashes, but the effect on traffic accident depends on weather conditions even under the same road geometry. This study identifies the variables affecting the crash severity by matching the highway accident data and weather data for 14 years from 2001 to 2014. A hierarchical ordered Logit model is used to reflect the effects of road geometry and weather condition interactions on crash severity, as well as the correlation between individual crashes in a region. Among the hierarchical models, we apply a random intercept model including interaction variables between road geometry and weather condition and a random coefficient model including regional weather characteristics as upper-level variables. As a result, it is confirmed that the effects of toll, ramp, downhill slope of 3% or more, and concrete barrier on the crash severity vary depending on weather conditions. It also shows that the combined effects of road geometry and weather conditions may not be linear depending on rainfall or snowfall levels. Finally, we suggest safety improvement measures based on the results of this study, which are expected to reduce the severity of traffic accidents in the future.

Crack Detection on Bridge Deck Using Generative Adversarial Networks and Deep Learning (적대적 생성 신경망과 딥러닝을 이용한 교량 상판의 균열 감지)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.303-310
    • /
    • 2021
  • Cracks in bridges are important factors that indicate the condition of bridges and should be monitored periodically. However, a visual inspection conducted by a human expert has problems in cost, time, and reliability. Therefore, in recent years, researches to apply a deep learning model are started to be conducted. Deep learning requires sufficient data on the situations to be predicted, but bridge crack data is relatively difficult to obtain. In particular, it is difficult to collect a large amount of crack data in a specific situation because the shape of bridge cracks may vary depending on the bridge's design, location, and construction method. This study developed a crack detection model that generates and trains insufficient crack data through a Generative Adversarial Network. GAN successfully generated data statistically similar to the given crack data, and accordingly, crack detection was possible with about 3% higher accuracy when using the generated image than when the generated image was not used. This approach is expected to effectively improve the performance of the detection model as it is applied when crack detection on bridges is required, though there is not enough data, also when there is relatively little or much data f or one class.

Centrifugal Test on Behavior of the Dolphin Structure under Ship Collision (선박충돌 시 돌핀 구조물의 거동에 대한 원심모형실험)

  • Oh, SeungTak;Bae, WooSeok;Cho, SungMin;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.61-70
    • /
    • 2011
  • The impact protection system consists of an arrangement of circular sheet pile cofferdams-denoted dolphin structuredeeply embedded in the seabed, filled with crushed rock and closed at the top with a robust concrete cap. Centrifuge model tests were performed to investigation the behaviors of dolphins in this study. Total 7 quasi-model tests and 11 dynamic model tests were performed. The main experimental results can be summarized as follows. Firstly, The experimental force-displacement results for quasi-static tests show a limited influence on the initial stiffness of the structure from the change in fill density and the related change in the stiffness of the fill. And by comparing the dissipation at the same dolphin displacement it was found that the denser fill increase the dissipation by 16% for the 20m dolphin and by 23% for the 30m dolphin. The larger sensitivity for the large dolphin is explained by a larger contribution to the dissipation from strain in the fill. In low level impacts the dynamic force-response is up to 26~58% larger than the quasi-static and the dissipation response is showed larger in small displacement. Hence, it is concluded conservative to use the quasi-static response characteristics in the approximation of the response, and it is further concluded that the dolphin resistance to low level impacts is demonstrated to be equivalent and even superior to the high level impacts.

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members (수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석)

  • Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

What Changed and Unchanged After Science Class: Analyzing High School Student's Conceptual Change on Circular Motion Based on Mental Model Theory (과학수업 후 변하는 것과 변하지 않는 것: 정신모형 이론을 중심으로 한 고등학생의 원운동 개념변화 사례 분석)

  • Park, Ji-Yeon;Lee, Gyoung-Ho;Shin, Jong-Ho;Song, Sang-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.475-491
    • /
    • 2006
  • In physics education, the research on students' conceptions has developed in the discussion on the nature and the difficulty of conceptual change. Recently, mental models have been a theoretical background in concrete arguments on "how students' conceptions are constructed or created." Mental models that integrate information in the presented problem and individual knowledge in their long-term memory have important information about not only expressed ideas but also in the thinking process behind the expressed ideas. The purpose of this study is to investigate the forming process and the characteristics of high school student's mental models about circular motion, and how they were changed by instruction. We used the think-aloud method based on the instrument for identifying student's mental models about circular motion, pretest of physics concept, mind map and interview for investigating student's characteristics. The results of the study showed that instructions based on the mental model theory facilitated scientific expressed model, but several factors that affected forming mental models like epistemological belief didn't change scientifically after 3 lessons.

Developing the Indicator System for Diagnosing the National Status Quo of Science Culture (국가 수준의 과학문화 실태 진단을 위한 지표 체제 개발)

  • Song, Jin-Woong;Choi, Jae-Hyeok;Kim, Hee-Kyong;Chung, Min-Kyung;Lim, Jin-Young;Cho, Sook-Kyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.4
    • /
    • pp.316-330
    • /
    • 2008
  • During the past two decades or so, science (or scientific or scientific & technological) culture has become one of the main themes not only of policy makers but also of science educators. Although, the idea of science culture has been taken as a desirable goal, there is little agreement about what it means and how to measure it. Particularly in Korea, there has been a rapid growth of science culture projects and programs, either by governmental or non-governmental, but with little systemic monitoring and evaluation for its practice. The purpose of this study is, thus, to explore a model of measuring science culture and develop a comprehensive indicator system for it. We reviewed many literatures on definitions of science culture and the surveys for related terms, particularly, of recent national and international surveys (e.g. US Science and Engineering Indicators, Eurobarometer, Japanese Science and Technology Indicators). Based on this review, a model for science culture is proposed and then used to define the Science Culture Indicators (SCI). This model encompasses two dimensions(i.e. individual and social), which are further divided into two aspects (i.e. potential and practice). Each dimension is expected to represent citizen literacy of and national infrastructure of science culture respectively. Each category in this $2{\times}2$ matrix is further divided into several sub-categories. The discussion concerning how the model and the indicators can be used to check the states of science culture at social as well as individual levels will be given with some concrete examples, such as indicators particularly related to science education.