• 제목/요약/키워드: model concrete

검색결과 5,283건 처리시간 0.034초

Application of mathematical metamodeling for an automated simulation of the Dong nationality drum tower architectural heritage

  • Deng, Yi;Guo, Shi Han;Cai, Ling
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.605-619
    • /
    • 2021
  • Building Information Modeling (BIM) models are a powerful tool for preserving and using architectural history. Manually creating information models for such a significant number and variety of architectural monuments as Dong drum towers is challenging. The building logic based on "actual measurement construction" was investigated using the metamodel idea, and a metamodel-based automated modeling approach for the wood framework of Dong drum towers was presented utilizing programmable algorithms. Metamodels of fundamental frame kinds were also constructed. Case studies were used to verify the automated modeling's correctness, completeness, and efficiency using metamodel. The results suggest that, compared to manual modeling, automated modeling using metamodel may enhance the model's integrity and correctness by 5-10% while also reducing time efficiency by 10-20%. Metamodel and construction logic offer a novel way to investigate data-driven autonomous information-based modeling.

Computer visualization approach for rotating FG shell: Assessment with ring supports

  • Al Thobiani, Faisal;Khadimallah, Mohamed A.;Hussain, Muzamal;Mohamed, Gar Al-Nabi Ibrahim;Ghandourah, Emad
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.559-566
    • /
    • 2021
  • In this paper, frequency analysis has been done for functionally graded cylindrical shell with ring supports using Sander's shell theory. The vibrations of rotating cylindrical shells are analyzed for different physical factors. The fundamental natural frequency is investigated for different parameters such as: ratios of length-to-diameter ring supports. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. The frequencies for different position of ring supports are obtained in the form of bell shaped. The backward frequencies increases and forward frequencies decrease on increasing the rotating speed. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

Prediction of the stability of badminton net via numerical and mathematical modeling

  • Ke Cui;Jiao Yuan;Liang Liu
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.127-135
    • /
    • 2023
  • The present paper develops application of TSDT and MCST to analysis of a FG cylindrical micro-shell. The present model may be used as a sensor applicable in badminton net to detect contact. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The solution is presented for a SS boundary condition to account the influence of various important parameters. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

Structural stability of laminated composite material for the effectiveness of half axial wave mode: Frequency impact

  • Muzamal, Hussain
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.309-315
    • /
    • 2022
  • This paper depicts the diagram of cylindrical shells as an essential idea. It centers around an outline of exploration and use of cylindrical shell in expansive current circumstance. In view of investigation of the current and prospect of model as a piece of present exploration work, a straightforward contextual analysis is examined with Love's shell theory based on Galerkin's method. The cylindrical shells are attached from one end of the cylindrical shells. The frequencies of ring support shells are investigated against the half axial wave mode. The frequencies increase on increasing the half axial wave mode. Also, the frequencies are downsized with ring supports. The software MATLAB is preferred to others because in this software computing coding is very easy to do. Just single command 'eig' furnishes shell frequencies and mode shapes by calculating eigenvalues and eigenvectors respectively. The shell vibration frequencies for cylindrical shells are compared with those results found in the open literature.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Correlation between frequency and Poisson's ratio: Study of durability of armchair SWCNTs

  • Muzamal Hussain;Mohamed A. Khadimallah;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.303-311
    • /
    • 2023
  • An analysis of the Poisson's ratios influence of single walled carbon nanotubes (SWCNTs) based on Sander's shell theory is carried out. The effect of Poisson's ratio, boundary conditions and different armchairs SWCNTs is discussed and studied. The Galerkin's method is applied to get the eigen values in matrix form. The obtained results shows that, the decrease in ratios of Poisson, the frequency increases. Poisson's ratio directly measures the deformation in the material. A high Poisson's ratio denotes that the material exhibits large elastic deformation. Due to these deformation frequencies of carbon nanotubes increases. The frequency value increases with the increase of indices of single walled carbon nanotubes. The prescribe boundary conditions used are simply supported and clamped simply supported. The Timoshenko beam model is used to compare the results. The present method should serve as bench mark results for agreeing the results of other models, with slightly different value of the natural frequencies.

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

초고층 건축물의 기둥축소량 해석 및 현장계측 - 해운대 아이파크 (Column Shortening Analysis and Field Measurement of Haeundae I'Park)

  • 정광량;이대용;송호범;박광민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.67-70
    • /
    • 2011
  • The effect of column shortening is a major consideration in design and construction of tall buildings, especially in concrete and composite structural systems. To avoid unexpected demage in structural and nonstructural elements, differential shortening between vertical members resulting from differing stress levels, loading histories, volume-to-surface ratios and other factors in a high-rise building must be properly considered in the design process. This paper represents analyzed and measured shortening results of RC cores and columns at the 72 story Haeundae I'Park. It shows that WACS program based on ACI and PCA material model is effective for the prediction of column shortening.

  • PDF

Learning Science in Communicating Science and Technology In-the-making: A Case Study of the 'Science and Technology Mania' Award Program

  • Hwang, Sung-Won;Hwang, Book-Kee;Choi, Jung-Hoon
    • 한국과학교육학회지
    • /
    • 제27권2호
    • /
    • pp.126-133
    • /
    • 2007
  • The 'Science and Technology Mania' award program is an annual nationwide award activity organized to provide teenagers with opportunities for engaging in a high-technology-based long-term project work. The task involves designing a model ship propelled by the Lorentz force (a Lorentz ship) that allows diverse approaches irreducible to one right answer, and thus adopts features of science and technology in-the-making, In this study, we attend to opportunities for learning science that the uncertain aspects of artifact-designing project provide with participants, particularly when students communicate with scientists about their design practices. We analyze oral presentation sessions of the program and articulate two findings. First, students articulate embodied knowing in the presence of scientists. Second, students enact discursive resources deployed in concrete action. We conclude that students' design practices constitute referent that communication is directed toward and therefore become resources for developing scientific discourse.