• 제목/요약/키워드: model concrete

검색결과 5,283건 처리시간 0.031초

Development of Fatigue Model for Airfield Concrete Pavement (공항 콘크리트 포장의 피로모형 개발 연구)

  • Kwon, Soo-Ahn;Yang, Hong-Seok;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • 제6권3호
    • /
    • pp.27-35
    • /
    • 2004
  • There are two methods in estimating the remaining life of in-service airfield concrete pavement. They are a method simply using the past accumulated traffic and a method using the theoretical mechanistic analysis. Since the former method is somewhat far from the actual condition, the latter method is widely used by most engineers and researchers. The most essential component of the latter method is the fatigue model of the concrete slab. A fatigue model for airfield concrete pavement is developed in this study by a series of fatigue tests using 30 concrete cylinder specimens obtained from a 10 year old in-service airfield concrete slab. Strengths for the stress ratio calculation were obtained from the split tensile test of the cores sliced. Fatigue test mode was repeated split tensile test. The R2 of developed fatigue model was 0.5. Specimens taken from another airport had been tested for validation of the model. The results showed a good fit to the model. It was also found that the fatigue life predicted from the model was a tittle greater when the stress ratio is greater than 80 percent than other fatigue models developed earlier in America.

  • PDF

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.

Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements (공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발)

  • Park, Hae Won;Shim, Cha Sang;Lim, Jin Seon;Joe, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • 제19권6호
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

Material Model and Thermal Response Analysis of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료모델과 열거동해석)

  • 강석원;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • 제13권3호
    • /
    • pp.268-276
    • /
    • 2001
  • A numerical model for the thermal response analysis of concrete structures is suggested. The model includes the stress-strain relationship, constitutive relationship, and multiaxial failure criteria at elevated temperature conditions. Modified Saenz's model was used to describe the stress-strain relationship at high temperatures. Concrete subjected to elevated temperatures undergoes rapid strain increase and dimensional instability. In order to explain those changes in mechanical properties, a constitutive model of concrete subjected to elevated temperature is proposed. The model consists of four strain components; free thermal creep strain, stress-induced (mechanical) strain, thermal creep strain, and transient strain due to moisture effects. The failure model employs modified Drucker-Prager model in order to describe the temperature dependent multiaxial failure criteria. Some numerical analyses are performed and compared with the experimental results to verify the proposed model. According to the comparison, the suggested material model gives reliable analytical results.

Meso-scale based parameter identification for 3D concrete plasticity model

  • Suljevic, Samir;Ibrahimbegovic, Adnan;Karavelic, Emir;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.55-78
    • /
    • 2022
  • The main aim of this paper is the identification of the model parameters for the constitutive model of concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress states. Identification procedure is performed taking into account multi-scale character of concrete as a structural material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, macro-scale model contains practically all important ingredients to include both bulk dissipation and surface dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into macro-scale elements domain describes localized failure through the implementation of embedded strong discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress state are performed to illustrate performance of the proposed methodology.

Structural Behavior of Beam-Column Joints Consisting of Composite Structures

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.111-120
    • /
    • 2002
  • This study proposes a joint model consisting of different types of members as a new structural system, and then investigates the resulting structural behavior. The joint model consists of a concrete-filled steel tube column (CFT) together with a steel reinforced concrete at the end plus reinforced concrete beam at the center. For comparison, two other joint models were designed, that are, a CPT with a reinforced concrete beam, and a CFT with a steel reinforced concrete at the end plus steel concrete beam at the center, then their joint capacity and rigidity, energy absorption capacity, etc., were all investigated. From the results, the CFT column with a steel reinforced concrete at the end plus steel concrete beam at the center was outstanding in terms of its capacity and rigidity. The results of this analysis demonstrate that an adequate connection type and reinforcement method with different materials of increasing the rigidity, thereby producing a capacity improvement along with protection from pre-fractures.

  • PDF

Fiber reinforced concrete properties - a multiscale approach

  • Gal, Erez;Kryvoruk, Roman
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.525-539
    • /
    • 2011
  • This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.

Fracture Analysis of Concrete Cylinder by Boundary Element Method (경계요소법에 의한 콘크리트 원통형관의 파괴해석)

  • 송하원;전재홍;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF

Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete

  • Mugisha, Aurore;Teomete, Egemen
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.399-408
    • /
    • 2019
  • Structural health monitoring is important for the safety of lives and asset management. In this study, numerical models were developed for the piezoresistive behavior of smart concrete based on finite element (FE) method. Finite element models were calibrated with experimental data collected from compression test. The compression test was performed on smart concrete cube specimens with 75 mm dimensions. Smart concrete was made of cement CEM II 42.5 R, silica fume, fine and coarse crushed limestone aggregates, brass fibers and plasticizer. During the compression test, electrical resistance change and compressive strain measurements were conducted simultaneously. Smart concrete had a strong linear relationship between strain and electrical resistance change due to its piezoresistive function. The piezoresistivity of the smart concrete was modeled by FE method. Twenty-noded solid brick elements were used to model the smart concrete specimens in the finite element platform of Ansys. The numerical results were determined for strain induced resistivity change. The electrical resistivity of simulated smart concrete decreased with applied strain, as found in experimental investigation. The numerical findings are in good agreement with the experimental results.

Study on Damage Evaluation Model for Reinforced Concrete Members (철근콘크리트 부재의 손상량 평가 모델에 관한 연구)

  • Cho, Byung Min;Maeda, Masaki;Kim, Taejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제19권2호
    • /
    • pp.75-83
    • /
    • 2015
  • The purpose of this study is to improve the previous damage evaluation model for RC members which is proposed by Igarashi[1] in 2010.The previous model was not confirmed by enough data of damage such as, residual crack length, width and area for exfoliation of concrete, etc. In addition, validation of the model is still insufficient. Therefore, experiment of a real-scale RC structure and experiment of RC columns using the high-strength concrete were conducted to gather the data of damage in RC members. The investigation has been conducted gathering the data not only additional experiments data but also existing data for modification of damage evaluation model. It has been investigated on changing damage in RC due to axial force ratio, shear reinforcement and shear span ratio. As a result, several problems were founded in the previous model, such as, hinge length($l_p$), spacing of flexural crack($S_{av,f}$), total width of flexural cracks regulated by maximum width of flexural crack($n_f$) and total width of shear cracks regulated by maximum width of shear crack($n_s$). New model is proposed and evaluated the damage properly.