• Title/Summary/Keyword: model concrete

Search Result 5,283, Processing Time 0.034 seconds

Experimental Techniques of Small-Scale Models for Reinforced Concrete Structural Researches (철근콘크리트구조 연구를 위한 소축적 구조모형실험기법)

  • Kim, Woo;Kim, Dae-Joong;Kang, Sung-Hoo
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1991
  • When the behavior of a prototype concrete structure is studied through small-scale model experiments, it is necessary to reproduce all significant physical characteristics on either an one-to-one basis or a specific similitude relationship. Any distortion of similitude must be understood and its effect must be predictable. This paper focuses on improved physical modeling techniques for small-scale reinforced concrete structures. Particular emphasis is placed on the development of a model concrete mix to accurately model the important properties of full-scale prototype concrete. Four types of model reinforcement with different bond characteristics are also studied by testing twenty simple beams. The information obtained will be of immediate use to engineers contemplating small-scale modeling of reinforced concrete structures.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

Effect of Strength and Age on Stress-Strain Curves in Low-, Medium-, and High-Strength Concretes (강도와 재령이 저강도, 중간강도, 및 고강도 콘크리트의 응력-변형률 곡선에 미치는 영향)

  • 오태근;이성태;양은익;최홍식;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.53-58
    • /
    • 2003
  • Many researchers have rigorously studied the nonlinear behavior of stress-strain relationship of concrete using mathematical curves. Most of model equations for stress-strain relationship, however, have been focused on old age concrete, and were not able to adequately represent the behavior of concrete at an early age. A wide understanding on the behavior of concrete from early age to old age is very important in evaluating the durability and service life of concrete structures. In previous study by authors of this paper, a stress-strain model equation for low- and medium-strength concretes was suggested. In this paper, to extend the application region of compressive stress-strain curve to high-strength concrete, an analytical research was performed. An analytical expression of stress-strain curve with strength and age was developed using regression analyses on the experimental results. For the verification of the proposed model equation, it was compared to the experimental data. The result showed that the proposed model equation was not only compatible with the experimental data quite satisfactorily but also describing well the effect of strength and age on stress-strain curve.

  • PDF

Predicting strength of SCC using artificial neural network and multivariable regression analysis

  • Saha, Prasenjit;Prasad, M.L.V.;Kumar, P. Rathish
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN's are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Collision Characteristics of Arch-Type Submarine Cable Protector - Effect of Material Models (재료모델 변화에 따른 아치형 해저 케이블 보호구조물의 충돌 특성)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.609-616
    • /
    • 2011
  • In the study, we analyzed the collision characteristics of a so-called arch-type submarine cable protector by considering the changes in drop heights of a stock anchor and material models for concrete and steel reinforcing bars. We considered plastic kinematics model and Johnson-Holmquist Concrete model for the concrete and linear elastic model and plastic kinematics model for the reinforcing bars. The drop heights of 2-ton stock anchor were selected as 3, 5, and 8.83m, respectively. ANSYS, a finite element analysis program, was used for the collision analysis. To save computational time, we converted those drop heights into initial velocities by the principle of energy conservation. From the sensitivity of the material models on the drop height changes, it is shown that the collision response of the reinforcing bars is sensitive firstly on the steel models and secondly on the concrete models, while the collision response of the concrete is sensitive only on the concrete models.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.