Browse > Article

Collision Characteristics of Arch-Type Submarine Cable Protector - Effect of Material Models  

Woo, Jin-Ho (부경대학교 해양공학과)
Na, Won-Bae (부경대학교 해양공학과)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.24, no.6, 2011 , pp. 609-616 More about this Journal
Abstract
In the study, we analyzed the collision characteristics of a so-called arch-type submarine cable protector by considering the changes in drop heights of a stock anchor and material models for concrete and steel reinforcing bars. We considered plastic kinematics model and Johnson-Holmquist Concrete model for the concrete and linear elastic model and plastic kinematics model for the reinforcing bars. The drop heights of 2-ton stock anchor were selected as 3, 5, and 8.83m, respectively. ANSYS, a finite element analysis program, was used for the collision analysis. To save computational time, we converted those drop heights into initial velocities by the principle of energy conservation. From the sensitivity of the material models on the drop height changes, it is shown that the collision response of the reinforcing bars is sensitive firstly on the steel models and secondly on the concrete models, while the collision response of the concrete is sensitive only on the concrete models.
Keywords
anchor collision; Johnson-Holmquist Concrete model; plastic kinematic model; submarine cable protector; dynamic finite element analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 궈이홍, 한상묵 (2010) 경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석, 한국전산구조공학회 논문집, 23(1), pp.81-94.
2 김홍택, 이명재, 박지웅, 윤순종, 한연진 (2010) 경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석, 한국지반환경공학회 논문집, 12(8), pp.59-67.
3 안승환, 김동선, 박경원 (2007) 해양환경특성에 따른 해저케이블 설치 및 보호방안, 해양환경안전학회 춘계학술발표대회, pp.51-56.
4 우진호, 나원배, 김헌태 (2009) 아치형 해저 케이블 보호 구조물의 앵커 충돌 수치 시뮬레이션, 한국해양공학회지, 23(1), pp. 96-103.
5 우진호, 나원배 (2010) 앵커 충돌 및 끌림에 의한 원통연결 보호구조물의 최대 응답 해석, 한국해양공학회지, 24(5), pp.81-87.
6 한국해양기술 (2007) 해저케이블 보호용 덕트, 대한민국 특허청 등록번호 10-0773953-0000.
7 ANSYS v.11 (2008) ANSYS, Inc., Canonsburg, PA, USA.
8 Berg, V.S., Preece, D.S. (2004) Shaped Charge Induced Concrete Damage Predictions using RHT Constitutive Modeling, International Society of Explosives Engineers, 2(in CD).
9 Gran, J.K., Frew, D.J. (1997) In-target Radial Stress Measurements for Penetration Experiments into Concrete by Ogive-nise Steel Projectiles, International Journal of Impact Engineering, 19(8), pp.715-726.   DOI   ScienceOn
10 KS V3311 (2006) 앵커, 한국표준협회.
11 Zhou, X.Q., Kuznetsov, V.A., Hao, H., Waschl, J. (2008) Numerical Prediction of Concrete Slab Response to Blast Loading, International Journal of Impact Engineering, 35, pp.1186-1200.   DOI   ScienceOn
12 Tham, C.Y. (2005) Reinforced Concrete Perforation and Penetration Simulation using AUTODYN-3D, Finite Elements in Analysis and Design, 41, pp.1401-1410.   DOI   ScienceOn
13 Wang, Z., Wang, J.G., Li, Y., Leung, C.F. (2006) Attenuation Effect of Artificial Cavity on Air-blast Waves in an Intelligent Defense Layer, Computers and Geotechnics, 33, pp.132-141.   DOI   ScienceOn