• Title/Summary/Keyword: model characteristics

Search Result 23,249, Processing Time 0.05 seconds

Dynamic Analysis of a 3DOF's Rigid Body Suspension System by Computer Simulation (컴퓨터 시뮬레이션을 이용한 3자유도 강체 현가시스템의 동특성 해석)

  • 정경렬
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.231-243
    • /
    • 1993
  • The dynamic characteristics of two types of mathematical models for a rigid body suspension system are analyzed and compared in this paper. One is a linearized model which is commonly used in the engine mount system analysis, the other is a nonlinear model which usually applied to the pendulum type system. The typical 3 d.o.f's mathematical model, for convenience, is chosen as a simulation model, because it has fundamental dynamic characteristics of suspension system. Time responses and unbalance responses of the rigid body, transmitted forces and torques are simulated by using the mathematical model. From the results of computer simulation, it is approved that he nonlinear model is valid and the linearized model gives erroneous results in the case of the pendulum type suspension system. In addition, in this study the effects of design change on the dynamic characteristics of the suspension system are investigated. Mount locations, mount angles, lengths, stiffness and damping coefficients of suspension bars are chosen as design parameters.

  • PDF

A Dynamic Model of Single Crystalline Photovoltaic Cells Incorporating Thermo-Electric Characteristics

  • Ghods, Amirhossein;Kim, Katherine A.;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.373-374
    • /
    • 2015
  • This paper proposes a dynamic thermo-electric model that links electrical parameters with thermal parameters. In this model, the irradiance and ambient temperature are used to calculate the cell temperature based on a four-layer model that includes the PV cell and surround materials. The calculated cell temperature is then used in the electrical model to accurately adjust the PV electrical characteristics. Dynamic PV characteristics, parallel capacitive and series inductive components, are added to the conventional single-diode model. The results show the effectiveness of this model rather than other conventional models of a PV panel.

  • PDF

Compact Capacitance Model of L-Shape Tunnel Field-Effect Transistors for Circuit Simulation

  • Yu, Yun Seop;Najam, Faraz
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2021
  • Although the compact capacitance model of point tunneling types of tunneling field-effect transistors (TFET) has been proposed, those of line tunneling types of TFETs have not been reported. In this study, a compact capacitance model of an L-shaped TFET (LTFET), a line tunneling type of TFET, is proposed using the previously developed surface potentials and current models of P- and L-type LTFETs. The Verilog-A LTFET model for simulation program with integrated circuit emphasis (SPICE) was also developed to verify the validation of the compact LTFET model including the capacitance model. The SPICE simulation results using the Verilog-A LTFET were compared to those obtained using a technology computer-aided-design (TCAD) device simulator. The current-voltage characteristics and capacitance-voltage characteristics of N and P-LTFETs were consistent for all operational bias. The voltage transfer characteristics and transient response of the inverter circuit comprising N and P-LTFETs in series were verified with the TCAD mixed-mode simulation results.

Correlation analysis of voice characteristics and speech feature parameters, and classification modeling using SVM algorithm (목소리 특성과 음성 특징 파라미터의 상관관계와 SVM을 이용한 특성 분류 모델링)

  • Park, Tae Sung;Kwon, Chul Hong
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2017
  • This study categorizes several voice characteristics by subjective listening assessment, and investigates correlation between voice characteristics and speech feature parameters. A model was developed to classify voice characteristics into the defined categories using SVM algorithm. To do this, we extracted various speech feature parameters from speech database for men in their 20s, and derived statistically significant parameters correlated with voice characteristics through ANOVA analysis. Then, these derived parameters were applied to the proposed SVM model. The experimental results showed that it is possible to obtain some speech feature parameters significantly correlated with the voice characteristics, and that the proposed model achieves the classification accuracies of 88.5% on average.

Analysis of Hydraulic Characteristics in the Middle Reaches of Nak-Dong River using 2-Dimensional Numerical Analyis Model (2차원 수치해석모형을 이용한 낙동강 중류구간의 하천흐름 해석)

  • Han, Sung-Dea;Choi, Hyun;Ahn, Chang-Hwan;Lee, Je-Yun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1732-1736
    • /
    • 2008
  • The characteristics of a river flow analysis are significant for river maintenance plan. At the present time, HEC-RAS, 1-Dimensional Numerical Analysis Model, is mainly applied to analyze the character of a river flow. The shape of a river is somewhat in longitudinal linear form. It was suspected that the usage of 1-dimensional numerical analysis model is more economical. Development of numerical analysis models and computers are possible to calculate large volume. Hence, it is possible to adapt the analysis of the key stations by 2-dimensional numerical analysis model. The limitation of 1-Dimensional Numerical Analysis Model is that it is hard to evaluate structure affection of numerical simulation by energy loss coefficient at river structure analyzing. When adaptation of the 2-dimensional numerical analysis model in river structure ensues, it takes more objective analyzing than 1-dimensional numerical analysis model for flow affection by river structure. 2-dimensional numerical analysis model consults with the different structure position of hydraulic characteristics and different water depth of shape and scope in vertical flow. 1-dimensional numerical analysis model is possible to simulate with only energy loss coefficient for sudden river section changing, sudden waterway changing by curved. 2-dimensional numerical analysis model use original geographical features. So the model removes technical subjectivity of faulty judgment. It is an objective analysis.

  • PDF

A study on high ozone concentration in Shiwha.Banwol industry complex using photochemical air pollution model- Analysis of meteorological characteristics - (시화.반월단지지역의 고농도 오존일에 대한 광화학모델 적용 연구 - 기상특성에 대한 분석 -)

  • An, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.47-59
    • /
    • 2011
  • The purpose of this paper is to simulate the high ozone concentration in Shiwha Banwol indusrial complex. High pollution episodes (ozone alert) of this area are the results of geographical location and its air pollutants emission. This research has used meteorological model (RAMS) and photochemical air pollution Model (CIT model). As first step of the evaluate of this combined model system simulations are done in terms of meteorological characteristics like wind fields, PBL-height, etc.. Numerical simulations are carried out with real meteorological synoptic data on June. 24-25, 2010. In comparison with real measurement and another research the model reflects well local meteorological phenomena and shows the possibility to be utilized to analyse the pollutant dispersion over irregular terrain region. The high ozone concentration is deeply correlated to the ambient air temperature, wind speed and solar radiation. Local meteorological phenomena like sea-land breeze impact on horizontal dispersion of ozone. This analysis of meteorological characteristics can, in turn, help to predict their influences on air quality and to manage the high ozone episodes.

Role-Based Access Control in Object-Oriented GIS (객체지향 지리정보시스템에서의 역할 기반 접근 제어)

  • Kim, Mi-Yeon;Lee, Cheol-Min;Lee, Dong-Hoon;Moon, Chang-Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.3
    • /
    • pp.49-77
    • /
    • 2007
  • Role-based access control (RBAC) models are recently receiving considerable attention as a generalized approach to access control. In line with the increase in applications that deal with spatial data. an advanced RBAC model whose entities and constraints depend on the characteristics of spatial data is required. Even if some approaches have been proposed for geographic information systems. most studies focus on the location of users instead of the characteristics of spatial data. In this paper. we extend the traditional RBAC model in order to deal with the characteristics of spatial data and propose new spatial constraints. We use the object-oriented modeling based on open GIS consortium geometric model to formalize spatial objects and spatial relations such as hierarchy relation and topology relation. As a result of the formalization for spatial relations. we present spatial constraints classified according to the characteristics of each relation. We demonstrate our extended-RBAC model called OOGIS-RBAC and spatial constraints through case studies. Finally. we compare our OOGIS-RBAC model and the DAC model in the management of access control to prove the efficiency of our model.

  • PDF

A Study on Dynamic Vibration Absorber Using Zener's Model (Zener 모델을 사용한 동흡진기 특성 연구)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • A dynamic vibration absorber using the Zener's model has been taken into account with respect to frequency response characteristics. The concept of the tuned mass damper with a single degree of freedom has been well applied for many industrial fields, because many researchers have extensively studied various basic characteristics, performance and optimization methods for long time. The Zener's model has an additional spring, which is connected between a damper and a mass, while the tuned mass damper with a single degree of freedom consists of a mass, a spring and a damper connected in parallel. In previous works, the basic performance and characteristics of the Zoner's model as a dynamic vibration absorber have not been investigated. In this study, the frequency response characteristics according to the parameter change of the Zener's model have been described. In order to find the optimum value of several parameters, we use iterative scheme with three dimensional frequency response diagram by MATLAB programming. Present results shows the Zener's model can give more good damping performance than the simple tuned mass damper, and the numerical of optimization method should be developed for the efficient vibration absorbtion.

  • PDF

System identification of arch dam model strengthened with CFRP composite materials

  • Altunisik, A.C.;Gunaydin, M.;Sevim, B.;Adanur, S.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.231-244
    • /
    • 2017
  • This paper presents the structural identification of an arch dam model for the damaged, repaired and strengthened conditions under different water levels. For this aim, an arch dam-reservoir-foundation model has been constructed. Ambient vibration tests have been performed on the damaged, repaired and strengthened dam models for the empty reservoir (0 cm), 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and full reservoir (60 cm) water levels to illustrate the effects of water levels on the dynamics characteristics. Enhanced Frequency Domain Decomposition Method in the frequency domain has been used to extract the dynamic characteristics. The dynamic characteristics obtained from the damaged, repaired and strengthened dam models show that the natural frequencies and damping ratios are considerably affected from the varying water level. The maximum differences between the frequencies for the empty and full reservoir are obtained as 16%, 33%, and 25% for damaged, repaired and strengthened model respectively. Mode shapes obtained from the all models are not affected by the increasing water level. Also, after the repairing and strengthening implementations, the natural frequencies of the arch dam model increase significantly. After strengthening, between 46-92% and 43-62% recovery in the frequencies are calculated for empty and full reservoir respectively. Apparently, after strengthening implementation, the mode shapes obtained are more acceptable and distinctive compared to those for the damaged model.

Dynamic Analysis of External Fuel Tank and Pylon Using Stick Model (스틱모델을 이용한 외부연료탱크 및 파일런 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Chan;Park, Sung Hwan;Choi, Hyun-Kyung;Hong, Seung Ho;Ha, Byung Kun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Aircraft should be equipped with various external stores for mission performance. Since these external stores may cause structural instability of aircraft, an evaluation of the effects between the aircraft and the external stores is required. For this purpose, an aircraft dynamic characteristics analysis reflecting an external store was performed, and the finite element model for the analysis of aircraft dynamic characteristics should simulate the dynamic characteristics of the component as accurately as possible while using a minimum of the nodes and elements. In this study, a stick model was constructed for dynamic characteristics analysis of the external fuel tank and installation pylon using MSC Patran/Nastran. For the calculation of the equivalent stiffness of the stick model, a simple beam theory was applied to construct the stick model of each part, and the validity of each stick models was confirmed by mode comparison with the fine model. Additionally, the model analysis of the stick model assembly, simulating a pylon equipped with an external fuel tank was performed to confirm that the basic modes required for the analysis of aircraft dynamic characteristics are well extracted. Finally, it was confirmed that the developed stick model assembly could be used for analysis of aircraft dynamic characteristics by comparing the errors in modes between the fine model assembly and the stick model assembly.