• Title/Summary/Keyword: mode-I loading

Search Result 212, Processing Time 0.033 seconds

Prediction of Progressive Interlaminar Fracture in Curved Composite Laminates Under Mode I Loading (모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측)

  • Kang, Seunggu;Shin, Kwangbok;Lee, HyunSoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.930-932
    • /
    • 2017
  • In this paper, prediction of progressive interlaminar fracture in curved composite laminates under mode I loading was described. The prediction of progressive interlaminar fracture in curved composite laminates was conducted using cohesive zone model(CZM) in ABAQUS V6.13. Interlaminar fracture toughness used as input parameters in CZM was obtained through mode I, mode II and mixed mode I/II tests. The behaviors of progressive interlaminar fracture for curved composite laminates showed a good agreement between experimental and numerical results.

  • PDF

Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects (원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동)

  • Song, Sam-Hong;Shin, Seung-Man;Lee, Jeong-Moo;Seo, Ki-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF

Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy

  • Torabi, A.R.;Berto, F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.723-740
    • /
    • 2014
  • A fracture criterion based on the strain energy density (SED) over a control volume, which embraces the notch edge, is employed in the present paper to assess the fracture loads of some U-notched Brazilian disk (UNBD) specimens. The specimens are made of commercial graphite and have been tested under pure mode I, pure mode II and mixed mode I/II loading. The results show that the SED criterion allows to successfully assess the fracture loads of graphite specimens for different notch tip radii and various mode mixity conditions with discrepancies that fall inside the scatter band of ${\pm}20%$.

Measurement of Fracture Toughness JC Under Mixed Mode Loading Using Unloading Compliance Method (혼합모드 하중하에서 제하 컴플라이언스법에 의한 파괴 인성 측정)

  • Sim, Jae-Ryong;Lee, Yeong-Suk;Kim, Do-Hyeong;Beom, Hyeon-Gyu;Gang, Gi-Chu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.113-120
    • /
    • 2002
  • Experimental procedure to measure fracture toughness (J$_{c}$) under mixed mode loading using CTS(Compact Tension-Shear) specimens is described. It\`s loading angle ranges from 0$^{\circ}$ to 45$^{\circ}$ with interval of 157. The general outline of experimental procedure is similar to that of ASTM E8l3-89 fur mode I fracture. Equations fur determining J-integral is quoted from the authors' previous works. The relation between unloading compliance and physical crack size was calibrated. As an example, fracture toughness of aluminum alloy 2024p-7361 was measured and some reasonable results of J$_{c}$ with various loading angles were obtained.

An Experimental Study on Fatigue Fracture Behavior of Steel for Merchant Ships (선박용 강재의 피로파괴거동의 실험적 연구)

  • Moon-Sik,Han;Sang-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fracture behavior of steel for merchant ships. The bending and shear loads were applied simultaneously on the specimens to simulate of real load condition for a ship. The effects of the stress intensity factor under mode I with mode II loading condition on the initiation and the propagation of a crack were investigated, with particular emphasis on mode II. When the $K_{II}$ stress intensity factor in mode II was applied under mode I loading condition, the propagation behavior of a crack is to be affected mainly by the anisotropic characteristic of materials.

  • PDF

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

Temperature effects on brittle fracture in cracked asphalt concretes

  • Ayatollahi, Majid-Reza;Pirmohammad, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.19-32
    • /
    • 2013
  • Cracking at low temperatures is one of the frequently observed modes of failure in asphalt concretes. In this investigation, fracture tests were performed on cracked asphalt concrete subjected to pure mode I and pure mode II loading at different subzero temperatures. An improved semi-circular bend (SCB) specimen containing a vertical crack was used to conduct the experiments. The SCB specimens produced from the gyratory compacted cylindrical samples were compressively loaded, and critical stress intensity factors, $K_{If}$ and $K_{IIf}$, were then calculated using peak loads obtained from the tests. The experimental results showed that with decreasing the temperature, mode I and mode II critical stress intensity factors increased first but below a certain temperature they both decreased. It was also found that at a fixed temperature, the mode II fracture resistance of the asphalt concrete was higher than its mode I fracture resistance.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O

  • Kim Gun-Ho;Won Young-Jun;Sakakur Keigo;Fujimot Takehiro;Nishioka Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.474-482
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by mode I. For this reason a study on mode I has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper low point shear-fatigue test with Aluminum alloy hi 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy (5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성)

  • 옹장우;진근찬;이성근;김종배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 1989
  • For the mixed-mode crack problems the direction of crack growth, the crack path and the rational representation of fatigue crack growth rates should be studied to predict fatigue life and safety of structures. In this study, a round specimen which produce nearly identical effects in all loading directions is proposed to make an easy measurement of initial direction of crack growth. The mode I and mode II stress intensity factors of the specimen were calculated using finite element method, in which the square root singular stresses at the crack tip are modeled by means of four rectangular quarter-point eight-noded elements surrounding the crack tip. Experimental results for high strength aluminum alloy showed that the direction of mixed-mode crack growth agree well with maximum principal stress criterion as well as minimum strain energy density criterion, but not with maximum shear stress criterion. From data of fatigue crack growth rates using crack geometry projected on the line perpendicular to the loading direction it is easily established that mixed-mode fatigue crack growth in 5083-H115 aluminum alloy goes predominantly with mode I crack growth behaviors.