• Title/Summary/Keyword: mode volume

Search Result 595, Processing Time 0.029 seconds

Free Vibrations of Tapered Columns with Constant Volume (일정체적 변단면 기둥의 자유진동)

  • 이병구;이태은;최규문;송주한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • The main purpose of this paper is to determine the dynamic optimal shapes of tapered column with constant volume. The linear, parabolic and sinusoidal tapers with the regular polygon cross-section are considered, whose material volume and span length are always held constant. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta method and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the tapered columns are analysed and the numerical result of this study are shown in table and figures.

  • PDF

Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples

  • Saboori, Behnam;Torabi, A.R.;Berto, F.;Razavi, S.M.J.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.699-706
    • /
    • 2018
  • In the present contribution, fracture resistance of U-notched GPPS members under mixed mode I/III loading conditions is assessed by using the Averaged Strain Energy Density (ASED) criterion. This criterion has been founded based on the ASED parameter averaged over a well-defined control volume embracing the notch edge. The validation of the theoretical criterion predictions is evaluated through comparing with the results of a series of mixed mode I/III fracture tests conducted on rectangular-shaped GPPS specimens weakened by a single edge U-notch. A recently developed apparatus for mixed mode I/III fracture experiments is employed for measuring the fracture loads of the specimens. The test samples are fabricated with different notch tip radii with the aim of evaluating the influence of this major feature of the U-notched components on the mixed mode I/III fracture behavior. It is shown that the onset of brittle fracture in U-notched GPPS specimens under various combinations of tension and out-of-plane shear can well be predicted by means of the ASED criterion.

Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems (ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략)

  • Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

A Development of Test Method on the Energy Consumption Efficiency of Domestic Gas Boiler below 70 kW (70 kW 이하 가정용 가스보일러 에너지소비효율 실험방법 개발)

  • Park, Chanil;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2016
  • The energy consumption efficiency in a variety of operational test mode was considered for domestic gas boiler below 70 kW. The energy efficiency test carried out in the experimental conditions similar to the actual operation status was analyzed and compared with the current Korean efficiency test method. Four types of test modes for each boiler(Non-condensing and condensing boiler) were carried out in the condition of laboratory mode(full load, steady state) and actual operating mode. Futhermore divided into two operational status for each of these, it was applied by maximum gas consumption and consumer sales conditions. Test equipment has the function referred to gas boiler standards, such as KS or European standard EN. The equipment should be continuously measured and record the measuring factors which are the flow volume of gas and water, laboratory temperature, water flow volume for heating, return water volume after heating and quantity of the exhaust gases(CO, NO, $NO_2$). The experimental results were found that non-condensing boiler efficiency of laboratory mode is about 10% higher than that of actual mode. In case of condensing boiler, the efficiency of laboratory condition is about 20% higher than that of the actual using conditions. I suggest that the government will gradually take the efficiency test method considering the actual conditions.

High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites (NiAl/Ni 미세적층복합재료의 고속변형거동)

  • Kim Hee-Yeoun;Kim Jin-Young;Jeong Dong-Seok;Enoki Manabu;Hong Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

On the Feasibility of Freak Waves Formation within the Harbor Due to the Presence of Infra-Gravity Waves of Bound Mode Underlying the Ever-Present Swells (Bound Mode의 외중력파에 의한 항내 이상파 생성가능성에 대하여)

  • Cho, Yong Jun;Bae, Jung Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • We carry out the numerical simulation to test a hypothesis that freak waves can be triggered by the infragravity waves of bound mode underlying the ever-present swells and its constructive interaction with swells using the Tool Box called the ihFoam that has its roots on the OpenFoam, and Bi-spectrum. Numerical simulation is implemented for the SamChcuk LNG Plant where freak waves have been reported in front of the private wharf during its construction phase due to the uncompleted northern breakwater. Infra-gravity waves of bound mode is generated using the difference wave-wave interaction between the local wind waves of 7 s and a swell of 11.4 s based on the Bi-spectrum. For the sake of comparison, numerical simulation for infra-gravity waves of free mode is also carried out. Numerical results show that stem waves along the private wharf for SamChcuk LNG Plant can be triggered by the infra-gravity waves of bound mode coming from the north, which eventually leads to freak waves when encounters the reflected waves from the south jetty.

A Study on the Change of Image Quality According to the Change of Tube Voltage in Computed Tomography Pediatric Chest Examination (전산화단층촬영 소아 흉부검사에서 관전압의 변화에 따른 화질변화에 관한 연구)

  • Kim, Gu;Kim, Gyeong Rip;Sung, Soon Ki;Kwak, Jong Hyeok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.503-508
    • /
    • 2019
  • In short a binary value according to a change in the tube voltage by using one of VOLUME AXIAL MODE of scanning techniques of chest CT image quality evaluation in order to obtain high image and to present the appropriate tube voltage. CT instruments were GE Revolution (GE Healthcare, Wisconsin USA) model and Phantom used Pediatric Whole Body Phantom PBU-70. The test method was examined in Volume Axial mode using the pediatric protocol used in the Y university hospital of mass-produced material. The tube voltage was set to 70kvp, 80kvp, 100kvp, and mAs was set to smart mA-ODM. The mean SNR difference of the heart was $-4.53{\pm}0.26$ at 70 kvp, $-3.34{\pm}0.18$ at 80 kvp, $-1.87{\pm}0.15$ at 100 kvp, and SNR at 70 kvp was about -2.66 higher than 100 kvp and statistically significant (p<0.05) In the Lung SNR mean difference analysis, $-78.20{\pm}4.16$ at 70 kvp, $-79.10{\pm}4.39$ at 80 kvp, $-77.43{\pm}4.72$ at 100 kvp, and SNR at 70 kvp at about -0.77 higher than 100 kvp were statistically significant. (p<0.05). Lung CNR mean difference was $73.67{\pm}3.95$ at 70 kvp, $75.76{\pm}4.25$ at 80 kvp, $75.57{\pm}4.62$ at 100 kvp and 20.9 CNR at 80 kvp higher than 70 kvp and statistically significant (p<0.05) At 100 kvp of tube voltage, the SNR was close to 1 while maintaining the quality of the heart image when 70 kvp and 80 kvp were compared. However, there is no difference in SNR between 70 kvp and 80 kvp, and 70 kvp can be used to reduce the radiation dose. On the other and, CNR showed an approximate value of 1 at 70 kvp. There is no difference between 80 kvp and 100 kvp. Therefore, 80 kvp can reduce the radiation dose by pediatric chest CT. In addition, it is possible to perform a scan with a short scan time of 0.3 seconds in the volume axial mode test, which is useful for pediatric patients who need to move or relax.

The Effect of Pressure Support on Respiratory Mechanics in CPAP and SIMV (CPAP 및 SIMV Mode하에서 Pressure Support 사용이 호흡역학에 미치는 효과)

  • Lim, Chae-Man;Jang, Jae-Won;Choi, Kang-Hyun;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Park, Pyung-Whan;Choi, Jong-Moo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.351-360
    • /
    • 1995
  • Background: Pressure support(PS) is becomimg a widely accepted method of mechanical ventilation either for total unloading or for partial unloading of respiratory muscle. The aim of the study was to find out if PS exert different effects on respiratory mechanics in synchronized intermittent mandatory ventilation(SIMV) and continuous positive airway pressure (CPAP) modes. Methods: 5, 10 and 15 cm $H_2O$ of PS were sequentially applied in 14 patients($69{\pm}12$ yrs, M:F=9:5) and respiratory rate (RR), tidal volume($V_T$), work of breathing(WOB), pressure time product(PTP), $P_{0.1}$, and $T_1/T_{TOT}$ were measured using the CP-100 pulmonary monitor(Bicore, USA) in SIMV and CPAP modes respectively. Results: 1) Common effects of PS on respiratory mechanics in both CPAP and SIMV modes As the level of PS was increased(0, 5, 10, 15 cm $H_2O$), $V_T$ was increased in CPAP mode($0.28{\pm}0.09$, $0.29{\pm}0.09$, $0.31{\pm}0.11$, $0.34{\pm}0.12\;L$, respectively, p=0.001), and also in SIMV mode($0.31{\pm}0.15$, $0.32{\pm}0.09$, $0.34{\pm}0.16$, $0.36{\pm}0.15\;L$, respectively, p=0.0215). WOB was decreased in CPAP mode($1.40{\pm}1.02$, $1.01{\pm}0.80$, $0.80{\pm}0.85$, $0.68{\pm}0.76$ joule/L, respectively, p=0.0001), and in SIMV mode($0.97{\pm}0.77$, $0.76{\pm}0.64$, $0.57{\pm}0.55$, $0.49{\pm}0.49$ joule/L, respectively, p=0.0001). PTP was also decreased in CPAP mode($300{\pm}216$, $217{\pm}165$, $179{\pm}187$, $122{\pm}114cm$ $H_2O{\cdot}sec/min$, respectively, p=0.0001), and in SIMV mode($218{\pm}181$, $178{\pm}157$, $130{\pm}147$, $108{\pm}129cm$ $H_2O{\cdot}sec/min$, respectively, p=0.0017). 2) Different effects of PS on respiratory mechanics in CP AP and SIMV modes By application of PS (0, 5, 10, 15 cm $H_2O$), RR was not changed in CPAP mode($27.9{\pm}6.7$, $30.0{\pm}6.6$, $26.1{\pm}9.1$, $27.5{\pm}5.7/min$, respectively, p=0.505), but it was decreased in SIMV mode ($27.4{\pm}5.1$, $27.8{\pm}6.5$, $27.6{\pm}6.2$, $25.1{\pm}5.4/min$, respectively, p=0.0001). $P_{0.1}$ was reduced in CPAP mode($6.2{\pm}3.5$, $4.8{\pm}2.8$, $4.8{\pm}3.8$, $3.9{\pm}2.5\;cm$ $H_2O$, respectively, p=0.0061), but not in SIMV mode($4.3{\pm}2.1$, $4.0{\pm}1.8$, $3.5{\pm}1.6$, $3.5{\pm}1.9\;cm$ $H_2O$, respectively, p=0.054). $T_1/T_{TOT}$ was decreased in CPAP mode($0.40{\pm}0.05$, $0.39{\pm}0.04$, $0.37{\pm}0.04$, $0.35{\pm}0.04$, respectively, p=0.0004), but not in SIMV mode($0.40{\pm}0.08$, $0.35{\pm}0.07$, $0.38{\pm}0.10$, $0.37{\pm}0.10$, respectively, p=0.287). 3) Comparison of respiratory mechanics between CPAP+PS and SIMV alone at same tidal volume. The tidal volume in CPAP+PS 10 cm $H_2O$ was comparable to that of SIMV alone. Under this condition, the RR($26.1{\pm}9.1$, $27.4{\pm}5.1/min$, respectively, p=0.516), WOB($0.80{\pm}0.85$, 0.97+0.77 joule/L, respectively, p=0.485), $P_{0.1}$($3.9{\pm}2.5$, $4.3{\pm}2.1\;cm$ $H_2O$, respectively, p=0.481) were not different between the two methods, but PTP($179{\pm}187$, $218{\pm}181 cmH_2O{\cdot}sec/min$, respectively, p=0.042) and $T_1/T_{TOT}$($0.37{\pm}0.04$, $0.40{\pm}0.08$, respectively, p=0.026) were significantly lower in CPAP+PS than in SIMV alone. Conclusion: PS up to 15 cm $H_2O$ increased tidal volume, decreased work of breathing and pressure time product in both SIMV and CPAP modes. PS decreased respiration rate in SIMV mode but not in CPAP mode, while it reduced central respiratory drive($P_{0.1}$) and shortened duty cycle ($T_1/T_{TOT}$) in CPAP mode but not in SIMV mode. By 10 em $H_2O$ of PS in CPAP mode, same tidal volume was obtained as in SIMV mode, and both methods were comparable in respect to RR, WOB, $P_{0.1}$, but CPAP+PS was superior in respect to the efficiency of the respiratory muscle work (PTP) and duty cycle($T_1/T_{TOT}$).

  • PDF

The Usefulness of Pressure-regulated Volume Control(PRVC) Mode in Mechanically Ventilated Patients with Unstable Respiratory Mechanics (기계 호흡 중 불안정한 호흡역학을 보인 환자에서 압력조절용적조정양식(Pressure-regulated Volume Control Mode)의 효용)

  • Sohn, Jang-Won;Koh, Youn-Suck;Lim, Chae-Man;Shim, Tae-Sun;Lee, Jong-Deog;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1318-1325
    • /
    • 1997
  • Background : Since the late 1960s, mechanical ventilation has been accomplished primarily using volume controlled ventilation(VCV). While VCV allows a set tidal volume to be guaranteed, VCV could bring about excessive airway pressures that may be lead to barotrauma in the patients with acute lung injury. With the increment of knowledge related to ventilator-induced lung injury, pressure controlled ventilation(PCV) has been frequently applied to these patients. But, PCV has a disadvantage of variable tidal volume delivery as pulmonary impedance changes. Since the concept of combining the positive attributes of VCV and PCV(dual control ventilation, DCV) was described firstly in 1992, a few DCV modes were introduced. Pressure-regulated volume control(PRVC) mode, a kind of DCV, is pressure-limited, time-cycled ventilation that uses tidal volume as a feedback control for continuously adjusting the pressure limit However, no clinical studies were published on the efficacy of PRVC until now. 'This investigation studied the efficacy of PRVC in the patients with unstable respiratory mechanics. Methods : The subjects were 8 mechanically ventilated patients(M : F=6 : 2, $56{\pm}26$ years) who showed unstable respiratory mechanics, which was defined by the coefficients of variation of peak inspiratory pressure for 15 minutes greater than 10% under VCV, or the coefficients of variation of tidal volume greater than 10% under PCV. The study was consisited of 3 modes application with VCV, PCV and PRVC for 15 minutes by random order. To obtain same tidal volume, inspiratory pressure setting was adjusted in PCV. Respiratory parameters were measured by pulmonary monitor(CP-100 pulmonary monitor, Bicore, Irvine, CA, USA). Results : 1) Mean tidal volumes($V_T$) in each mode were not different(VCV, $431{\pm}102ml$ ; PCV, $417{\pm}99ml$ ; PRVC, $414{\pm}97ml$) 2) The coefficient of variation(CV) of $V_T$ were $5.2{\pm}3.9%$ in VCV, $15.2{\pm}7.5%$ in PCV and $19.3{\pm}10.0%$ in PRVC. The CV of $V_T$ in PCV and PRVC were significantly greater than that in VCV(p<0.01). 3) Mean peak inspiratory pressure(PIP) in VCV($31.0{\pm}6.9cm$ $H_2O$) was higher than PIP in PCV($26.0{\pm}6.5cm$ $H_2O$) or PRVC($27.0{\pm}6.4cm$ $H_2O$)(p<0.05). 4) The CV of PIP were $13.9{\pm}3.7%$ in VCV, $4.9{\pm}2.6%$ in PVC and $12.2{\pm}7.0%$ in PRVC. The CV of PIP in VCV and PRVC were greater than that in PCV(p<0.01). Conclusions : Because of wide fluctuations of VT and PIP, PRVC mode did not seem to have advantages compared to VCV or PCV in the patients with unstable respiratory mechanics.

  • PDF