• Title/Summary/Keyword: mode switching servo

Search Result 33, Processing Time 0.027 seconds

PD/PID Speed Controller Design for Low-stiffness Servo Drive System (저강성 서보 구동시스템을 위한 PD/PID 속도제어기 설계)

  • Bae S.G.;Seok J.K.;Lee D.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.544-547
    • /
    • 2003
  • The purpose of this paper is to develop the straightforward design guidelines of PD/PID speed controller for Industry servo drives with plug and play concept. The controller gains are uniquely determined from the current control loop dynamics, speed loop delay, and mechanical parameters. In order to eliminate the mechanical friction uncertainties, an automatic PD/PI control mode switching algorithm Is introduced using online spectrum analysis of motor torque command. The dynamic performance of the proposed scheme assures a fast tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of conventional PI control scheme, extensive test is carried out on actual servo system.

  • PDF

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.323-332
    • /
    • 2003
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

The Development of Calculation Algorithm of Power Loss for Inverter in BLDC Motor Drive with Switching Modes (스위칭 방식에 따른 BLDC Motor 구동용 인버터의 전력 손실 계산 알고리즘 개발)

  • Kim, Sang-Hoon;Lee, Young-Cheol
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.119-126
    • /
    • 2004
  • BLDC Motor is one of the widely utilizable motors in servo system. The accurate calculation of the power loss for the IGBT and Inverse diode with Bipolar and Unipolar switching modes the driving modes is important for the design of drives for their heat treatment. If it were not for temperature-sensors in devices, it is difficult to get direct power loss, so. Power losses may be modeled by computer modeling to obtain the Calculation of the Power loss for Inverter in BLDC Motor with switching modes which is presented in this paper. The computer modeling is carried out by Matlab simulation. The power loss consists of conduction losses Conduction losses are the source of occurrence due to The IGBT and Inverse diode currents. Switching losses are the source of occurrence due to switching on/off in the devices, and gives the dominant influence to the loss. As a result, the unipolar I mode is best in reducing the heat losses.

  • PDF

A Study on the Characteristics Improvement of Electro-Hydraulic Servo System Controlled by High Speed Solenoid Valve (고속전자밸브로 제어되는 전기.유압 서보시스템의 특성 개선에 관한 연구)

  • Park, Seong-Hwan;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.288-294
    • /
    • 2001
  • In this study, a new PWM method considering the actuation delay of high speed solenoid valves is proposed to improve the response characteristics of electro hydraulic servo systems controlled by high speed solenoid valves. In addition, the decision method for the system gain, the basic period of PWM, and the sampling time is proposed, Since the conventional system controlled by high speed solenoid valves is too slow to apply this method, a high speed driving circuit(Quick-Drive) which enables rapid switching of the high speed solenoid valve at a high speed sampling mode is applied to realize this method. The experimental result shows that it is possible to achieve precision and quiet control without occurrence of limit cycle and wide range dead band.

  • PDF

Sliding Mode Controller for Process with Time Delay (지연시간을 갖는 프로세스를 위한 슬라이딩모드 가변구조 제어기)

  • 김석진;박귀태;이기상;송명현;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1158-1168
    • /
    • 1994
  • A variable structure control scheme(VSCS) with sliding mode that can be applied to the process with input/output(I/O) delay is proposed and its control performances is evaluated. The proposed VSCS with and output feedback scheme comprises a variable structure controller, a servo dynamic for tracking the set-poing, and a Smith predictor for compensating the effects of time delay. The robustness against the parameter variations and external disturbances can be achieved by the proposed VSCS even when the controlled process includes I/O delay. And the desired transient response is obtained by simple adjustment of the coefficients of the switching surface equation.

  • PDF

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호;정경민;박윤창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.205-209
    • /
    • 1999
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

  • PDF

Precise Control for Servo Systems Using Sliding Mode Observer and Controller (슬라이딩 모드 관측기와 제어기를 이용한 서보시스템의 정밀제어)

  • Han, Seong-Ik;Gong, Jun-Hui;Sin, Dae-Wang;Kim, Jong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.154-162
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to model. This paper is concerned with the compensation for friction using the variable structure system approach as nonmodel based method. The problem of chattering in the sliding mode controller is suppressed by the implementation of the boundary layer concept. And the estimation for friction using sliding mode observer makes the upper bound of matched uncertainty reduced. Accordingly, the effect of chattering can be more suppressed. And the sliding surface is constructed by adding an integral component to the switching function that is made by using error dynamics. This sliding surface guarantees the good tracking performance. Experimental results for a XY table system show that the proposed method has a good performance especially in the low velocity.

Variable Structure Control of DC motor Using Fuzzy Logic (퍼지논리를 이용한 직류전동기의 가변구조제어)

  • Lee, Yong-Jae;Jin, Myung-Chul;Lee, Sang-Rae;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.548-551
    • /
    • 1991
  • The Sliding Mode Control of Variable Structure System is applied to robot manipulators or servo system for its merits of robustness to variable system parameters and disturbances. But Switching frequency of control input is excessively high during sliding mode operation. In this paper, a new control algorithm usings fuzzy logic is proposed to solve this problem. With the proposed algorithm, a dc motor speed control system has been simulated and the result shows expected performances.

  • PDF

Position Control of An Induction Motor With Chattering Alleviation Sliding Mode Controller (체터링 저감 슬라이딩 모우드 제어기에 의한 유도전동기 위치제어)

  • Kim, Duk-Heon;Kim, Sei-Chan;Yoo, Dong-Wook;Won, Chung-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1221-1224
    • /
    • 1992
  • To obtain a robustness which is one of important characteristics needed in servo drive, the sliding mode control method is used as a control strategy. However, the undesired phenomenon of chattering is a serious problem. In this paper, an adaptive chattering alleviation algorithm for variable structure system control is proposed to solve this serious problem. Digital controller using the theory of chattering alleviation control is applied to the position control problem of an induction motor system. Comparisons of this algorithm with other variable structure system control algorithms indicate that the chattering can be alleviated. This controller is implemented using IBM-PC(8088 CPU) which controls current controlled PWM inverter consisted of IGBT as a switching device to drive motor.

  • PDF

A study on the development of Electro-hydraulic servo Excavator(1) -Simulation of the trajectory tracking control using VSS- (전기-유압서보에 의한 자동유압굴삭기의 개발에 관한 연구(1) -가변구조에 의한 궤도추종제어 시뮬레이션-)

  • Heo, Jun-Yeong;Ha, Seok-Hong;Lee, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-76
    • /
    • 1989
  • The objective of this paper is to design the variable structure system(VSS) controller for the tracking control of excavator which is driven by electro-hydraulic servomechansim. It is generally agreed that the dynamic characteristics of the robot arm such as excavator are coupled, time varying, and highly nonlinear, and also hydraulic system contains nonlinear characteristics in itself, so performing exact position control and trajectory tracking control need remarkable consideration. To solve this porblem, this system was designed as a variable structure system. The salient feature of VSS is that the sliding mode occur on a switching surface. While in sliding mode, the system remains insensitive to parameter variations and disturbances. This control algorithm was applied to a hydraulic excavator by simulaltion and to a simulator by experiment. And its effectiveness was verified. And the results of VSS for the electro-hydraulic excavator was compared with that of the PID when load disturbances and system parameter variations exist.

  • PDF