• 제목/요약/키워드: mode switching servo

검색결과 33건 처리시간 0.03초

포 구동시스템에 대한 모드 스위칭 제어기 설계 (Design of a Mode Switching Controller for Gun Servo System)

  • 임정빈;백승문;유준
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.425-430
    • /
    • 2006
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servo system. A mode switching control(MSC) scheme, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while a time optimal control method is used for target designation. In this paper, a modified PTOS(Proximate Time Optimal Servomechanism) algorithm is derived so as to accommodate the damping term in the gun plant model. Also, applying a mode switching strategy, the bumpless transfer is made possible when the controller switches from PTOS to PID. To show the effectiveness of the overall control system, simulation results are given including the gun dynamics.

SIL을 이용한 근접장 기록계에서의 서보 방식의 개발 (Improvement Air Gap Control for SIL based Near-Field Recording System)

  • 김중곤;김태훈;정준;박노철;양현석;박영필
    • 정보저장시스템학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-4
    • /
    • 2007
  • A high density optical data storage device has been required for many years. In the field of the optical data storage, a near-field recording (NFR) technology is considered as a next generation one for achieving the high data density. Due to an evanescent wave effect occurred under 100nm distance which is the excessively small distance between the SIL and the disc, the most significant and difficult problem in this technology is to maintain a gap between a solid immersion lens (SIL) and a disc. Also, maintaining the gap under at least 50nm is required in the NFR gap servo system to use the evanescent wave effect efficiently. There are some institutes that have shown the novel gap servo control. In general, they use a mode switching servo method which consists of approach, hand-over and gap control mode. However there is a critical problem such as an overshoot at the tuning point from the approach mode to the hand-over mode, which may cause a collision between the SIL and the disc. In this paper, we show our NFR system and an improved gap servo system using an exponential function as the approach mode which can reduce the overshoot.

  • PDF

산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계 (Automatic P/PI Speed Controller Design for Industry Servo Drives)

  • 배상규;석줄기;김경태;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권12호
    • /
    • pp.616-623
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the quality of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, acceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically performed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

스위칭 동태방정식을 이용한 선형 다변수서보메카니즘에 대한 견고한 제어기 설계 (The robust controller design for linear multivariable servo mechanism using switching dynamics)

  • 박귀태;곽군평;김동식;최중경;주영중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.535-540
    • /
    • 1989
  • This paper presents an approach for designing a linear multivariable servo mechanism for the case of constant and time varying disturbances. In this paper, we use an "observer-based" approach to consider the disturbance vector as states of the system and the resulting servomechanism design involves the design of an asymptotic observer which estimates both the actual plant states and the disturbance states. The design makes use of switching dynamics instead of switching logics to obtain the sliding mode and from the switching dynamics we can remove the undesirable chattering phenomena.phenomena.

  • PDF

전기유압 서보시스템의 슬라이딩 모드 위치제어 (Position Control of an Electro-hydraulic Servo System with Sliding Mode)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.16-22
    • /
    • 2021
  • The variable structure controller has the characteristic that while in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, so it is robust to the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or exposed to disturbances. To solve this problem, a sliding mode controller based on the IVSC approach excluding an integrator is proposed in this study. The proposed sliding mode control was applied to the position control of a hydraulic cylinder piston. The sliding plane was determined by the pole placement and the control input was designed to ensure the existence of the sliding mode. The feasibility of the modeling and controller was reviewed by comparing it with a conventional proportional control through computer simulation using MATLAB software and experiment in the presence of significant plant parameter fluctuations and disturbances.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

새로운 스위칭 평면을 가지는 가변구조 서보 제어기 설계에 관한 연구 (A study on the servo system controller design of variable structure systems with new switching surface)

  • 문용기;이정훈;이대식;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.308-312
    • /
    • 1990
  • In this paper, we propose a simple method to control the servo system with sliding mode in the parameter variation and disturbances. We show the comparison between the conventional sliding line and the new sliding line and the proposed sliding mode control. The performance of the fast response and no overshoot by using the proposed sliding line is obtained.

  • PDF

포/포탑 구동장치의 모드 스위칭 제어기 설계 (Mode Switching Control Design for Gun/Turret Driving System)

  • 백승문;김지영;임정빈;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.33-37
    • /
    • 2004
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servomechanism control. A mode switching control(MSC) system, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while proximate time optimal servo(PTOS) is used for target designation. Because gun dynamic have large damping comparing to acceleration, PTOS algorithm with damping is newly derived. This paper adopts the initial value compensation method that improve the transient response after switching. Some simulation results are given to show the effectiveness of our scheme.

  • PDF

슬라이딩 모드를 이용한 DC Servo Motor 의 위치 제어 (Position Control of D.C. Servo Motor Using Variable Structure Control with sliding mode)

  • 이윤종;이일형;손영대;오원석;김신섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.571-575
    • /
    • 1989
  • A position control system of D.C. Servo motor based on discrete variable structure system with sliding mode is presented. The sliding mode has been designed for a continuous system, but it is often realized in digital fashion because the complex switching logic can be easily carried out. In digital control system, the ideal sliding mode does not occur since the structure can't be switched during sampling interval. However, there can be exist a motion which is confined to a regoin including the sliding surface and proceeds to the origin along the surface. This notion is called quasisliding mode. In this paper, we introduce this control scheme to the D.C. Servo motor position control in order to reduce the chattering phenonenon.

  • PDF