• 제목/요약/키워드: mode superposition

검색결과 161건 처리시간 0.025초

비대칭 유한 요소 방정식으로 표현되는 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석 (Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor with Asymmetric Finite Element Equations)

  • 서찬희;정경문;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1022-1027
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered metal bearing and flexible structures by using the finite element method and the mode superposition method considering the asymmetry of the gyroscopic effect and sintered metal bearing. The eigenvalues and eigenvectors are calculated by solving the eigenvalue problem and the adjoint eigenvalue problem by using the restarted Arnoldi iteration method. The decoupled equations of motion can be obtained from global finite element motion equations by using the orthogonal relation between the right eigenvectors and left eigenvectors. The decoupled equations of motion are used to analyze the unbalance response of a high speed polygon mirror scanner motor. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results.

  • PDF

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.

상대 가속도를 이용한 기초 가진을 받는 다자유도 기계 시스템의 동적 해석 (Dynamic Analysis for Mechanical Systems with Multi-Degree of Freedom under Base Excitation Using Relative Acceleration)

  • 이태원
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.36-41
    • /
    • 2020
  • Mechanical systems installed in transport devices, such as vehicles, airplanes, and ships, are mostly subject to translational accelerations at the joints during operations. This base acceleration excitation has a large influence on the performance of the system, therefore, its response must be well analyzed. However, the existing methods for dynamic analysis of structures have some limitations in use. This study presents a new numerical method using relative acceleration to solve these limitations. If the governing equation of motion is linear and the mass matrix, the damping matrix, and the stiffness matrix are constant over time in the finite element analysis, the proposed method can be applied to the transient behavior analysis and the harmonic response analysis of the structure. Because it is not necessary to introduce a virtual mass and the rigid body motions are removed from the analysis, it is possible to use not only the direct integration method in the time domain but also the mode superposition method to obtain the dynamic responses. This paper demonstrates with three examples how the present method is suitable for the dynamic analysis of a structure with multi-degree of freedom.

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • 제1권2호
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)

  • Seng, Sopheak;Jensen, Jorgen Juncher;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1024-1040
    • /
    • 2014
  • The theoretical background and a numerical solution procedure for a time domain hydroelastic code are presented in this paper. The code combines a VOF-based free surface flow solver with a flexible body motion solver where the body linear elastic deformation is described by a modal superposition of dry mode shapes expressed in a local floating frame of reference. These mode shapes can be obtained from any finite element code. The floating frame undergoes a pseudo rigid-body motion which allows for a large rigid body translation and rotation and fully preserves the coupling with the local structural deformation. The formulation relies on the ability of the flow solver to provide the total fluid action on the body including e.g. the viscous forces, hydrostatic and hydrodynamic forces, slamming forces and the fluid damping. A numerical simulation of a flexible barge is provided and compared to experiments to show that the VOF-based flow solver has this ability and the code has the potential to predict the global hydroelastic responses accurately.

자이로스코픽 효과와 유체 동압 베어링에 의한 비대칭성을 고려한 회전 유연 디스크-스핀들 시스템의 유한요소 강제 진동 해석 (Finite Element Forced Response of a Spinning Flexible HDD Disk-spindle System Considering the Asymmetry Originating from Gyroscopic Effect and Fluid Dynamic Bearings)

  • 박기용;장건희;서찬희
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.915-922
    • /
    • 2010
  • This paper presents an efficient method for determining the forced response of a spinning flexible disk-spindle system supported by fluid dynamic bearings(FDBs) in a computer hard disk drive(HDD). The spinning flexible disk-spindle system is represented by the asymmetric finite element equations of motion originating from the asymmetric dynamic coefficients of the FDBs and the gyroscopic moment of a spinning disk-spindle system. The proposed method utilizes only the right eigenvectors of the eigenvalue problem to transform the large asymmetric finite element equations of motion into a small number of coupled equations, guaranteeing the accuracy of their numerical integration. The results are then back-substituted into the equations of motion to determine the forced response. The effectiveness of the proposed method was verified by comparing it with the responses from the classical methods of mode superposition with the general eigenvalue problems, and mode superposition with modal approximation. The proposed method was shown to be effective in determining the forced response represented by the asymmetric finite element equations of motion of a spinning flexible disk-spindle system supported by FDBs.

공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석 (Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber)

  • 홍사영;경조현;김병완
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

아크 유도 장주기 광섬유 격자의 공진 파장 특성 (Resonant Wavelength Characteristics of Arc-Induced Long-Period Fiber Gratings)

  • 정철;이호준
    • 대한전자공학회논문지SD
    • /
    • 제39권10호
    • /
    • pp.48-56
    • /
    • 2002
  • 일반 광섬유에 아크 방전을 인가하여 코어 및 클래딩의 직경 변화를 발생시켜 장주기 격자를 제작하는 방법이 소개되었다. 본 연구에서는 매우 약한 아크를 반복적으로 발생시켜 광섬유에 매우 약한 변형을 수 차례 주어 광섬유 격자 직경을 정밀하게 조절 할 수있는 방법을 사용한 중첩 장주기 광섬유 격자 제조 방법을 제안하였다. 또한 위상정합 조건을 이용하여 장주기 광섬유 격자의 직경 변화에 따른 공진 파장의 변화를 이론적으로 유도하였으며, 실험을 통해 확인하였다. 또한 실험 결과 아크 유도 광섬유 격자의 주기와 공진 파장과의 관계가 위상 정합 조건과 일치하는 것을 확인하였으며, 온도 변화에 따른 공진 파장의 변화를 측정하고 기계적 강도를 측정하였다.

지반-구조물 연계모델의 등가감쇠값에 관한 연구 (A Study on Equivalent Modal Damping Values of Soil-Structure Coupling Models)

  • 박형기
    • 대한토목학회논문집
    • /
    • 제7권3호
    • /
    • pp.241-248
    • /
    • 1987
  • 지반-구조물 상호작용 효과가 큰 경우의 동적문제를 모드중첩법으로 해결하기 위하여 여러 가지 등가모드감쇠값 결정 방법에 대한 이론적 배경을 검토하였다. 또한 component mode synthesis method에 의하여 감쇠행렬을 구하고 이를 이용한 직접적분법으로 지반-구조물의 연계모델의 응답을 계산하여 각 등가모드감쇠값 결정 방법으로 구한 등가모드감쇠값을 사용한 모드 중첩법의 해석 결과와 비교 분석하였다. 해석모델로는 2종류의 상부구조와 4종류의 지반조건을 고려하고 이를 조합한 경우를 채택하였다. 본 연구 결과로 소멸에너지법으로 얻은 등가모드감쇠값이 직접적 분법의 결과에 가장 근사적인 결과를 주는 것을 알 수 있었다. 고정지반모델인 경우에는 강도가중법을 제외한 다른 방법으로 구한 등가모드감쇠값은 직접적분법의 결과와 거의 일치되는 응답을 주었다.

  • PDF

개선된 콤포넌트 모드법을 이용한 거대구조물의 동적해석 (Dynamic analysis for complex structures using the improved component mode method)

  • 심재수;박명균
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.37-44
    • /
    • 1993
  • There are a lot of linear dynamic analysis methods for complex structures. Each method has advantages and shortcomings. Method of dynamic analysis for complex structure is selected considering characteristics of dynamic loading, computer facility available number of degree of freedem and accuracy of results. It is a main point of view to get economical results rather then accurate ones for analysis of general complex structures, Mode superposition method and direct integration method are generally used. However, the characteristics of load is not considered in mode superpositon method, the personal computer cannot be used in direct integration methods. To over-come these shortcomings, the component mode method incorporating Ritz algorithm updated is proposed to solve economically dynamic behavior of the structures. The purpose of study is a formulation of algorithm, and computer programing suitable for dynamic analysis of the complex structure in personal computer environment.

  • PDF