• 제목/요약/키워드: mode shape ratio

검색결과 216건 처리시간 0.027초

고트랙밀도 HDD 서스펜션의 동특성 해석 (suspension dynamics of HDD for high track density)

  • 김정주;전정일;변용규;노광춘;정정주;전태건
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1885-1895
    • /
    • 1997
  • As track density needs to increase to the order of 10, 000 tpi, the suspension has become a critical component in hard disk drives. One of the main obstacles to attain high track density is the structural resonances of the suspension in lateral direction. We investigate the suspension dynamics through the experimental modal analysis and the finite element method. An LDV (Laser Doppler Vibrometer) is employed to measure the response of the suspension which is excited by a shaker and an inpulse hammer for the free condition and the loaded condition, respectively. After comparing the experimental and numerical results, we study how the initial geometry of the bend region affects the suspension dynamics. It is found that the natural frequency of the sway mode decreases as the bend ratio and the bend angle increase. The shape of torsional mode changes as the mass of a slider increases, resulting in a local decrease in the natural frequency.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

일정체적 단순지지 보-기둥의 동적 최적단면 (Dynamic Optimal Shapes of Simple Beam-Columns with Constant Volume)

  • 이병구;박광규;모정만;이상진
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.221-228
    • /
    • 1997
  • 이 논문은 일정체적 단순지지 보-기둥의 동적 최적단면의 결정에 관한 연구이다. 정다각형 단면의 단면깊이가 포물선으로 변화하는 보-기둥에 대한 자유진동을 지배하는 상미분방정식을 유도하였다. 이 미분방정식에는 축하중효과를 고려하였고, Runge-Kutta method와 Regula-Falsi method를 이용하여 미분방정식을 수치적분하고 고유진동수를 산출하였다. 수치해석 결과로부터 얻어진 진동수-단면비 곡선의 임계값들을 분석하여 동적 최적단면을 결정하고 이 결과들을 표 및 그림에 나타내었다.

  • PDF

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구 (An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor)

  • 김민기;윤지수;황정재;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.187-199
    • /
    • 2011
  • 본 연구는 희박 예혼합 연소기에서 연소실과 연료-공기 혼합부의 공진모드의 관계가 연소불안정에 어떤 영향을 미치고 있는지에 대하여 실험적으로 확인한 연구이다. 다체널 동압측정을 통하여 각각 위치에서 동압의 모드와 각 센서들간의 phase를 분석하여 연소불안정의 원인을 규명할 수 있었다. 연소실의 길이와 혼합부의 길이를 음향학적 경계로 일치시켜 연소불안정 특성을 확인해 보았을 때 두가지 서로 다른 연소불안정 모드를 확인할 수 있었는데 저주파 연소불안정 특성은 화염의 열방출 섭동과 연소실의 공진모드에 기인하며, 고주파 영역대의 연소불안정 현상은 혼합부의 길이를 변경하였을 때 발생하는 또 다른 불안정 현상임을 실험적으로 확인할 수 있었다.

  • PDF

다른 형태를 가진 2소자 프린트 안테나의 방사특성에 관한 연구 (A Study of the Radiation Characteristics of Novel Printed Antenna Composed of Dual Elements with Different Shape)

  • 이채봉;김정현
    • 융합신호처리학회논문지
    • /
    • 제9권2호
    • /
    • pp.141-145
    • /
    • 2008
  • 길이가 서로 다른 평행선로에 전류가 흐르는 경우, 커먼모드 전류(Common mode current)에 의한 전자파의 방사가 일어난다. 이러한 방사 원리를 이용하여 경량, 소형의 길이가 다른 2소자 선형 안테나가 제안되어 있다. 그러나 이 안테나의 경우 선으로 결합된 구조를 가지기 때문에 제작에 있어서 많은 제약이 따른다. 본 논문에서는 선형 안테나의 단점을 개선하고, 제작과 설계가 용이한 평면 기판에 길이가 다른 2소자 평면 안테나를 설계하고, 광대역(UWB: Ultra Wide Band)의 특성을 가지는 안테나를 설계하였다. 그리고 안테나 소자에 삼각형 패치 S, 노치, 테이퍼를 설계함으로서 방사특성은 다이 폴 안테나와 비슷하나 보다 넓은 대역에서 동작하는 안테나를 제작 할 수 있었다. 그 결과 비대역($VSWR{\le}2$)이 약 58%가 되었다.

  • PDF

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

이광자 형광법과 비공선 일종 이차고조파법에 의한 피코초 레이저 펄스폭과 펄스형 측정 (Measurement of picosecond laser pulsewidth and pulseshape by two-photon fluorescence and noncolloinear type I second harmonic generation method)

  • 한기호;박종락;이재용;김현수;엄기영;변재오;공흥진
    • 한국광학회지
    • /
    • 제7권3호
    • /
    • pp.251-259
    • /
    • 1996
  • 주 공진기 Nd:YLF 레이저에서 Q-switching and mode-locking(QSML)된 펄스열로부터 단일 펄스를 선택한 후 4중경로 Nd:glass 레이저 증폭기를 통과시켜 얻은 증폭된 빔의 펄스폭을 이광자 형광법으로 측정하였고 비공선 일종 이차고조파법을 이용하여 CW mode-locked 펄스열의 자기상관을 구해 펄스폭과 함께 펄스형을 결정하였다. 측정된 TPF 자기상관 패턴은 QSML 펄스열에서 단일 펄스를 선택하는 위치에 따라 다른 양상을 보였다. 즉, 펄스열 전반부에서 선택된 펄스의 자기상관은 곡선이 부드러운 펄스형을 보이는 반면, 펄스열 후반부일 때는 예리한 spike와 중앙의 substructure를 나타냈다. TPF법에 의한 증폭된 빔의 자기상관으로부터 펄스폭은 44.4ps, 대비비는 2.86로 측정되었으며 이 대비비로부터 펄스와 배경을 합한 전체 에너지에 대한 펄스의 에너지비 E$_{p}$/E$_{total}$ =0.62를 구할 수 있었고 또한 mode-locking만 된 펄스를 사용한 SHG 자기상관 실험에서는 펄스폭이 46.6ps로 측정되었다. 한편, 측정된 SHG 자기상관 신호를 여러 펄스형으로 fitting한 결과 펄스형이 sech$^{2}$형에 가까움을 확인할 수 있었다. 이 펄스형을 이용한 시뮬레이션을 통해 4중경로 증폭기를 통과한 펄스의 펄스폭 감소 효과를 확인하였다.다.

  • PDF

작은 충돌손상을 가진 보강판의 최종강도 해석 (Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage)

  • 이탁기;임채환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF