• Title/Summary/Keyword: mode shape data

Search Result 207, Processing Time 0.024 seconds

A new damage detection indicator for beams based on mode shape data

  • Yazdanpanah, O.;Seyedpoor, S.M.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.725-744
    • /
    • 2015
  • In this paper, a new damage indicator based on mode shape data is introduced to identify damage in beam structures. In order to construct the indicator proposed, the mode shape, mode shape slope and mode shape curvature of a beam before and after damage are utilized. Mode shape data of the beam are first obtained here using a finite element modeling and then the slope and curvature of mode shape are evaluated via the central finite difference method. In order to assess the robustness of the proposed indicator, two test examples including a simply supported beam and a two-span beam are considered. Numerical results demonstrate that using the proposed indicator, the location of single and multiple damage cases having different characteristics can be accurately determined. Moreover, the indicator shows a better performance when compared with a well-known indicator found in the literature.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

A Study on the Vibration Analysis of an Automobile Steering System (승용차 스티어링 칼럼 시스템의 진동해석에 관한 연구)

  • 김찬묵;김도연
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.494-503
    • /
    • 1998
  • In this paper, in order to analyze dynamic characteristics of an automobile steering system consisting of many components, natural frequencies and transfer functions of each component and the total system are found on a FFT analyzer by experiments. Then, the data are transmitted to a commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of a rubber coupling in column and telescoping effects on system are considered. C.A.E commercial programs are used to compare with the results of experiments. For the finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring element. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency, while the column mode is main mode at higher. The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

High-frequency force balance technique for tall buildings: a critical review and some new insights

  • Chen, Xinzhong;Kwon, Dae-Kun;Kareem, Ahsan
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.391-422
    • /
    • 2014
  • The high frequency force balance (HFFB) technique provides convenient measurements of integrated forces on rigid building models in terms of base bending moments and torque and/or base shear forces. These base moments or forces are then used to approximately estimate the generalized forces of building fundamental modes with mode shape corrections. This paper presents an analysis framework for coupled dynamic response of tall buildings with HFFB technique. The empirical mode shape corrections for generalized forces with coupled mode shapes are validated using measurements of synchronous pressures on a square building surface from a wind tunnel. An alternative approach for estimating the mean and background response components directly using HFFB measurements without mode shape corrections is introduced with a discussion on higher mode contributions. The uncertainty in the mode shape corrections and its influence on predicted responses of buildings with both uncoupled and coupled modal shapes are examined. Furthermore, this paper presents a comparison of aerodynamic base moment spectra with available data sets for various tall building configurations. Finally, e-technology aspects in conjunction with HFFB technique such as web-based on-line analysis framework for buildings with uncoupled mode shapes used in NALD (NatHaz Aerodynamic Loads Database) is discussed, which facilitates the use of HFFB data for preliminary design stages of tall buildings subject to wind loads.

Mode shape expansion with consideration of analytical modelling errors and modal measurement uncertainty

  • Chen, Hua-Peng;Tee, Kong Fah;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.485-499
    • /
    • 2012
  • Mode shape expansion is useful in structural dynamic studies such as vibration based structural health monitoring; however most existing expansion methods can not consider the modelling errors in the finite element model and the measurement uncertainty in the modal properties identified from vibration data. This paper presents a reliable approach for expanding mode shapes with consideration of both the errors in analytical model and noise in measured modal data. The proposed approach takes the perturbed force as an unknown vector that contains the discrepancies in structural parameters between the analytical model and tested structure. A regularisation algorithm based on the Tikhonov solution incorporating the L-curve criterion is adopted to reduce the influence of measurement uncertainties and to produce smooth and optimised expansion estimates in the least squares sense. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is then utilised to demonstrate the applicability of the proposed expansion approach to the actual structure. The results from the benchmark problem studies show that the proposed approach can provide reliable predictions of mode shape expansion using only limited information on the operational modal data identified from the recorded ambient vibration measurements.

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

A study on the vibration analysis of automobile steering system and improvement of ride comfort (승용차 스티어링 칼럼 시스템의 진동해석과 승차감 개선에 관한 연구)

  • 김찬묵;임홍재;김도연;임승만;이외순;조항원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.336-342
    • /
    • 1997
  • In this paper, in order to analyze dynamic characteristics of automobile steering system consisting of many components, natural frequencies and transfer functions of each component and total system are found on FFT by experiments. Then, the data are transmitted to commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of rubber coupling in column and telescoping effects on system are considered. C.A.E commercial program are used to compare with the results of experiments. For finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring elements. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency while the column mode is main mode at higher . The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

The Analysis of Mode Shape using 2 Dimensional Continuous Scanning (2차원 연속 Scanning을 이용한 진동모드 해석)

  • Yoon, Sang-Yol;Ryu, Je-Kil;Park, Kyi-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.531-535
    • /
    • 2000
  • If the displacement of the structure is obtained by integrating the signal from accelorometer and laser, the vibration mode can be examined. This conventional method, however, has the disadvantage of the necessity of multiple accelerometers and many data processing steps such as frequency response function(FRF). In order to get smooth mode shape, we should also use algorithms of cubic spline or others. In this paper, we propose a method which gets the mode shape by using the velocity signal directly obtained from the plane scanning. In this method, we just use coefficients and phases for specific frequency.

  • PDF

Comparison of Theoretical model with Experiment in Bead Shape of Laser Welding (레이저 용접의 비드 형상에 대한 실험치와 이론 결과의 비교)

  • Kim, J.D.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 1994
  • A theoretical heat-flow model incorporating with a constant moving CO$_{2}$ laser beam has been analyzed to predict depth and the shape of bead section during last beam welding. The laser beam is exponentially attenuated with an abosrption coefficient in the material. The solution can be expressed in terms of normalized variables. The experimental data were generated by usint CW 2 CO$_{2}$ laser with multi beam mode and CW 3 kW CO$_{2}$laser with Gaussian mode. The specimens were made as bead-on-plate welds for SM 10C, STS 304, STS 316, STS 420 and pure Nickel. The maximum possible penetration depth and the shape of beas section for given sources of laser power, travel speed and beam spot size can be prdicted with this model in a given material.

  • PDF

Multiple damages detection in beam based approximate waveform capacity dimension

  • Yang, Zhibo;Chen, Xuefeng;Tian, Shaohua;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.663-673
    • /
    • 2012
  • A number of mode shape-based structure damage identification methods have been verified by numerical simulations or experiments for on-line structure health monitoring (SHM). However, many of them need a baseline mode shape generated by the healthy structure serving as a reference to identify damages. Otherwise these methods can hardly perform well when multiple cracks conditions occur. So it is important to solve the problems above. By aid of the fractal dimension method (FD), Qiao and Wang proposed a generalized fractal dimension (GFD) to detect the delamination damage. As a modification of GFD, Qiao and Cao proposed the approximate waveform capacity dimension (AWCD) technique to simplify the calculation of fractal and overcome the false peak appearing in the high mode shapes. Based on their valued work, this paper combined and applied the AWCD method and curvature mode shape data to detect multiple damages in beam. In the end, the identification properties of the AWCD for multiple damages have been verified by groups of Monte Carlo simulations and experiments.