• Title/Summary/Keyword: mode shape change

Search Result 140, Processing Time 0.041 seconds

Vibration Mode Shape Changed by Phase Angle in Vibration Testing Using Phase-Shifting ESPI (위상이동 ESPI를 이용한 진동실험에서 위상각에 따른 진동모드 형상의 변화)

  • 정현철;김경석;양승필;장호섭;박찬주;조영학;김종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.443-446
    • /
    • 2003
  • The vibration mode shape changed by the phase angle that can be controlled by phase-shifting ESPI system is discussed. For the phase-shifting ESPI experiment the stroboscopic illumination by using AOM(Acousto-Optic Modulator) is needed, and the initial phase angle can be adjusted by the program. The vibration mode shape is changed when the initial phase angle is changed. We examined the vibration mode shape change due to the initial phase angle change at each resonance frequency. Through this study, we found that in the vibration testing using phase-shilling ESPI the vibration mode shape is improved in the quality by adjusting exact phase angle and the error of the quantitative vibration analysis can be reduced.

  • PDF

Damage Detection of a Steel Member Using Modal Testing (강부재의 손상발견을 위한 모달실험 기법)

  • Jang, Jeong Hwan;Lee, Jung Whee;Kim, Sung Kon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.467-477
    • /
    • 1997
  • A series of experimental tests have been performed on a tube beam in which artificial damage is applied in order to address damage detectability using modal analysis. Modal parameters considered are frequency, displacement mode shape and strain mode shape CoMAC(Coordinate Modal Assurance Criterion) and Modal Vector Error have been adopted for presenting the change of displacement mode shape and strain mode shape. It is revealed strain mode shape is the most sensitive to damage.

  • PDF

Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness (층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구)

  • Yoo, Seok-Hyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

Feedback scope for fault detection and localization

  • Hunsang Jung;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.6-32
    • /
    • 2002
  • The damage localization of the structural system using the natural frequency measurement only is proposed. The existing methods use the changes of mode shape, strain mode shape or curvature mode shape before and after the damage occurrence as these shapes carry the geometric information of the structure. Basically, the change of natural frequencies of the structure can be used as the indicator of the damage occurrence but not as the indicator of the damage location as the natural frequency changes does not carry the geometric information of the structure. In this research, the feedback scope method that measures the natural frequency changes of the structure with and without the feedback Ioo...

  • PDF

Mode Shape Variation of Disc Brake with Respect to Contact Stiffness Variation (마찰재 접촉강성에 따른 디스크 브레이크 진동모드 형상화)

  • Kang, Jae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Eigensolutions associated with self-excited vibration of disc brake system can be obtained by complex eigenvalue analysis. The eigenvalue sensitivity to change in contact stiffness can be used to demonstrate stability criteria and eigenvalue veering. Dynamic instability on eigenvalue loci with respect to the variation of contact stiffness is found to be related to mode interaction between two adjacent modes. This modal interaction can be effectively shown by mode shape visualization. This paper presents the methodology to construct the mode shape of disc brake system where a disc and two brake pads are coupled with contact stiffness.

A Study on the Effectiveness and Convergency of Five Damage Measures for Damage Assessment of 2-Dimensional Truss Sturctures using Extended Kalman Filter (확장 칼만 필터를 이용한 2차원 트러스 구조물의 손상 추정에 적용된 5가지 손상지표의 유효성 및 수렴성에 관한 연구)

  • 유숙경;서일교;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.207-214
    • /
    • 2000
  • In this paper, a study of the effenctiveness and convergency of five damage measures for structural damage detection of 2-dimensional truss structure using the extended Kalman filtering algorithm is presented. These damage measures are associated with the change in mode shape and displacement due to structural damage. Damage measures contain the change in natural frequency, mode shape, curvature of mode shape, displacement of static force and curvature of displacement of static force. The effectiveness and convergency of these damage measures by using extended Kalman filtering algorithm are demonstrated with the numerical examples.

  • PDF

Advanced Load Follow Operation Mode for Korean Standardized Nuclear Power Plants (한국 표준 원전의 부하추종을 위한 운전 기법)

  • Park, Jung-In;Oh, Soo-Youl;Song, In-Ho;Hah, Yung-Joon;Kuh, Jung-Eui;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.183-192
    • /
    • 1992
  • An advanced load-follow operation mode, Mode K, is presented for the Korean Standardized Nuclear Power Plants. The Mode K utilizes a heavy worth bank dedicated to axial shape control independent of the existing regulating banks. In Mode K, the heavy bank provides a wide range of axial shape control and a monotonic relationship between its motion and the axial shape change, which makes it easy to automate axial shape control. The achievement of full automatic reactor power control both for the reactivity and power shape would reduce the burden due to load-follow operation on the operator. Also, it can accommodate the frequen-cy control, which requires the plant to respond to the unexpected demand. The Mode K design concepts were tested using simulation responses of Yonggwang Units 3&4, the reference plants for the Korean Standardized Nuclear Power Plants. The results illustrate that the Mode K is an adequate operation mode to provide practical load-follow capabilities for the Korean Standardized Nuclear Power Plants.

  • PDF

Effect of Capsule Shape on Heat Storage (캡슐 형상이 축열에 미치는 영향)

  • 정재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.964-971
    • /
    • 2002
  • A numerical investigation of the constrained melting of phase change materials within spherical-like capsule is presented. A single-domain enthalpy formulation is used for simulation of the phase change phenomenon. The solution methodology is verified with the melting process inside an isothermal spherical capsule. Especially, the effect of capsule shape on the heat storage is emphasized. Two shape parameters are considered from the real capsule shape showing good characteristics of heat storage and the effect of these parameters is examined. Early during the melting process, the conduction mode of heat transfer is dominant. Thus the capsule shape with large surface area is desirable. However, the capsule shape with large surface area plays negative role on the strength of buoyancy-driven convection that becomes more important as melting continues.

Effect of Metal Transfer Mode on Spatter Generation of $CO_2$ Welding ($CO_2$ 용접의 스패터 발생에 미치는 용적이행 모드의 영향)

  • 강봉용;김희진
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.72-80
    • /
    • 1997
  • The spatter generation rate of GMA welding with $CO_2$ gas shielding was measured with the change of welding conditions such as wire feeding rate and welding voltage and then the results were analized with the accompanying changes in metal transfer mode and in bead geometry. The spatter generation rate (SGR) was relatively low not only wit the short circuit transfer but with the truely globular transfer mode. However, the SGR resulted with the mixed mode were consistantly high. The resultant wave pattern of mixed mode was due to the coexistance of short-circuit and globular transfer and characterized by the frequent appearance of instantaneous short circuit. Considering the result of SGR and that of bead geometry, it could be concluded that when the wire feeding rate (or welding current) was either low or high, the optimum bead shape could be obtained along with the low spatter generation. However, in the middle range of wire feeding rate, the optimum bead shape was only obtained in the mixed mode condition resulting in the high spatter generation.

  • PDF

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.