• Title/Summary/Keyword: mode shape

Search Result 1,545, Processing Time 0.025 seconds

Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles

  • Oshima, Yoshinobu;Yamamoto, Kyosuke;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.731-753
    • /
    • 2014
  • In this study, an indirect approach is developed for assessing the state of a bridge on the basis of mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness and measurement noise. The assessment theory's feasibility is verified through numerical simulations of interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. It is determined that the damage state can be recognized by the estimated mode shapes when the beam incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. However, the developed theory has low robustness against noise. Therefore, numerous measurements are needed for damage identification when the measurement is contaminated with noise.

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

Resonant Pulse Power Converter with a Self-Switching Technique

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.784-791
    • /
    • 2010
  • In this paper, a resonant pulse power converter (RPPC) is proposed. The proposed RPPC transfers the pulse-shape power from a DC source to a load periodically. The RPPC consists of a resonant circuit and a resonant pulse converter driven by a self-switching circuit. Depending on the magnitude difference between the input and output voltages, the operations of the RPPC are divided into 4 modes; boost mode, hybrid mode, direct mode and cut-off mode, respectively. The main switch of the RPPC turns on in the ZCS condition and off in the ZVS condition spontaneously. The operational principles of a RPPC using the self-switching technique are analyzed and verified in experiments. An example of a RPPC application is demonstrated in the area of thermoelectric energy harvesting.

The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake (디스코 브레이크에서 열섬 현상이 발생되는 원인과 저더진동에 미치는 영향)

  • Cho, Chong-Du;Kim, Myoung-Gu;Cho, Ho-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.886-892
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

레이저 표면경화처리에서 빔의 형태에 따른 경화층 크기에 관한 연구

  • 김재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.13-17
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaaussian mode of beam. Then the model for rectangular beam was used for the prediction of the size of harened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters suchas beam mode, beam size, and traverse speed.

Vibration Characteristics of Langevin-Type Piezoelectric Torsional Transducers (랑주방형 압전 비틀림 변환기의 진동특성)

  • Kwon, Oh-Soo;Kim, Jin-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.612-617
    • /
    • 2000
  • The vibrational characteristics of Langevin-type piezoelectric torsional transducers have been studied theoretically and experimentally in this paper. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Solutions of the boundary-value problem have yielded the natural frequencies and mode shapes of the transducers. The theoretical solutions have been verified by comparing the numerical results with experimental ones.

  • PDF

Construction and Study of Longitudinally Pumped single Mode Pulsed Dye Laser (종펌핑 단일 종모드 섹소레이저 제작 및 특성연구)

  • 이종훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.43-45
    • /
    • 1989
  • Single mode pulsed incidence dye laser which has TEMoo spatial beam pattern, near gaussian temporal shape and narrow band width(less than 500MHz) has been constructed The improved performance comes as a results of cavity length(~5cm) and definition of optical path by means of longitudinal pumping. Using 1.0X10-4M RH-6G dye, conversion efficiency was approximately 2.2% and tuning range was 548-564nm.

  • PDF

A Numeric Modelling Technique for the Shape Development of Fatigue Crack (피로 균열 형상 진전의 수치 모델링 기법에 관한 연구)

  • Han, Moon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.225-233
    • /
    • 1999
  • This paper describes a versatile finite element technique which has been used to investigate of wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems analyzed to date include the surface cracks in leak-before-break situations, the development of quarter-elliptical corner defects, planar semi-elliptical surface defects and the fatigue growth of defects.

  • PDF

Processing of NiTi Shape Memory Alloy by Self- propagating High-temperature Synthesis (자전 고온 반응 합성법을 이용한 NiTi계 형상기억 합금의 제조에 관한 연구)

  • 윤종필
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Synthesis of the NiTi shape memory alloy using the thermal explosion mode of the self-propagating high-temperature synthesis has been investigated. The significant fractions of intermetallics phases were found to form at the Ti/Ni powder interface during the heating to the ignition temperature and seemed to influence the relative fraction of phases in the final products. As the heating rate to the ignition temperature was increased, the combustion temperature and the fraction of NiTi in the final reaction products were increased. The synthesis reaction under 70 MPa compressive pressure yielded a reaction product with 98% theoretical density.

  • PDF