• Title/Summary/Keyword: mode shape

Search Result 1,540, Processing Time 0.033 seconds

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

A Study on the Vibration Characteristics of Stiffened Cylinder (보강된 실린더의 진동특성에 관한 연구)

  • Kim, Gwang-Rae;Jang, Yong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.408-414
    • /
    • 2001
  • The structural characteristics of the stiffened double cylinder was investigated through experiment and analysis. The outside cylinder was excited with piezoelectric actuator and the mode shape of the cylinder with stiffening T frame was obtained by using holographic interferometry. Finite element method was applied for further modal investigation of the stiffened cylinder. The experimental results showed that the mode shape of cylinder was dependent on the exciting frequencies and the T frame showed salient effect of damping at most of the resonent frequencies. In particular frequencies, the T frame worked as a transmitter. FFM showed similar results with the experiments. This paper showed that the laser-based method such as holographic interferometry is well suited for investigation of the whole-field mode shapes and FEM has good performance to estimate the medal characteristics of the mechanical structure.

Measurement of Mode Shape By Using A Scanning Laser Doppler Vibrometer (스캐닝 레이저 도플러 진동계를 이용한 모드 해석)

  • Gang, Min-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2560-2567
    • /
    • 2000
  • When spatially dense velocity distribution is measured by a scanning laser Doppler vibrometer, the Fourier transform method provides the real and imaginary parts of the mode shapes in the form of a polynomial. However the Fourier transform method is often impractical because the independent decomposition property of cosine and sine components into real and imaginary parts, respectively, does not hold due to the leakage problem which commonly occurs in the Fourier transform of harmonic signals. To deal with this problem, a Hilbert transform method is newly proposed in this article. The proposed method is free from the leakage problem and relatively robust to the scanning error. A simulation example is provided to verify the effectiveness of this method.

Optimization of HDD Suspension Shape Using Sensitivity Analysis and Sequential Linear Proframing (감도해석 및 순차적 선형계획법을 이용한 HDD 서스펜션의 형상 최적화)

  • Hwang, Chang-Ho;Kim, Dong-Wook;Park, No-Cheol;Lee, Jongsoo;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.319.2-319
    • /
    • 2002
  • The main obstacle to high track density in HDD id the structural resonances of the suspension. The most critical mode is sway mode and second torsion mode, when a data is read and written. It is common fact that the effect of two modes is smaller when a thickness is bulky. But the stiffness of suspension is smaller, the slider can follow a disk better. Because these two fact are reciprocal, a compromise is needed. So we investigated another method to improve band width without changing of the thickness of suspension but with changing of the shape. (omitted)

  • PDF

Modal Analysis of Structures (구조물의 모달해석에 관한 연구)

  • Kim, Hong-Jin;Park, Je-Woo;Hwang, Jae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.665-668
    • /
    • 2008
  • The load distribution to each mode of a structure under seismic loading depends on the modal participation factor. The factor of an idealized analytical model, however, is different to the actual one due to modeling and construction error. Therefore, there exist limits on the estimation of actual behavior. In this study, an identification procedure for participation factor based on vibration test is proposed. The procedure has an advantage that the mode shape vector can also be estimated directly from the participation factor. The numerical simulation using a three story building is performed to evaluate the proposed procedure.

  • PDF

Measurement of Mode Shape By Using A Scanning Laser Doppler Vibrometer (스캐닝 레이저 도플러 진동 측정기를 이용한 모드 측정)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.420-425
    • /
    • 2000
  • When spatially dense velocity distribution is measured by a scanning laser Doppler vibrometer, the Fourier transform method provides the real and imaginary parts of the mode shapes in the form of a polynomial. However the Fourier transform method is often impractical because the independent decomposition property of cosine and sine components into real and imaginary parts, respectively, does not hold due to the leakage problem which commonly occurs in the Fourier transform of harmonic signals. To deal with this problem, a Hilbert transform method is newly proposed in this article. The proposed method is free from the leakage problem and relatively robust to tire scanning error. A simulation example is provided to verify the effectiveness of this method.

  • PDF

Identifying stiffness irregularity in buildings using fundamental lateral mode shape

  • Vijayanarayanan, A.R.;Goswami, Rupen;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • Soft or extreme soft storeys in multi-storied buildings cause localized damage (and even collapse) during strong earthquake shaking. The presence of such soft or extremely soft storey is identified through provisions of vertical stiffness irregularity in seismic design codes. Identification of the irregularity in a building requires estimation of lateral translational stiffness of each storey. Estimation of lateral translational stiffness can be an arduous task. A simple procedure is presented to estimate storey stiffness using only properties of fundamental lateral translational mode of oscillation (namely natural period and associated mode shape), which are readily available to designers at the end of analysis stage. In addition, simplified analytical expressions are provided towards identifying stiffness irregularity. Results of linear elastic time-history analyses indicate that the proposed procedure captures the irregularity in storey stiffness in both low- and mid-rise buildings.

Vibration and Position Tracking Control of a Smart Structure Using SMA Actuators (형상기억합금 작동기를 이용한 스마트 구조물의 진동 및 위치 추적제어)

  • Park, N.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.155-163
    • /
    • 1996
  • This paper presents vibration and position tracking control of a smart structure using shape memory alloy(SMA) actuators. A governing equation of motion of the proposed structure is obtained via Hamilton's princeple. The dynamic characteristics of the SMA actuator are experimentally identified and incorporated with the governing equation to furnish a control system model. Subsequently, a sliding mode controller which has inherent robustness to external disturbances is formulated on the basis of the sliding mode conplacement, and also for the position tracking control of desired trajectories with low-frequency sine and square waves.

  • PDF

Modified Generic Mode Coding Scheme for Enhanced Sound Quality of G.718 SWB (G.718 초광대역 코덱의 음질 향상을 위한 개선된 Generic Mode Coding 방법)

  • Cho, Keun-Seok;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.119-125
    • /
    • 2012
  • This paper describes a new algorithm for encoding spectral shape and envelope in the generic mode of G.718 super-wide band (SWB). In the G.718 SWB coder, generic mode coding and sinusoidal enhancement are used for the quantization of modified discrete cosine transform (MDCT)-based parameters in the high frequency band. In the generic mode, the high frequency band is divided into sub-bands and for every sub-band the most similar match with the selected similarity criteria is searched from the coded and envelope normalized wideband content. In order to improve the quantization scheme in high frequency region of speech/audio signals, the modified generic mode by the improvement of the generic mode in G.718 SWB is proposed. In the proposed generic mode, perceptual vector quantization of spectral envelopes and the resolution increase for spectral copy are used. The performance of the proposed algorithm is evaluated in terms of objective quality. Experimental results show that the proposed algorithm increases the quality of sounds significantly.

A Study on Impact Sound Insulation Properties of EPDM Micro Cellular Pad (에틸렌-프로필렌-디엔 삼원 공중합 (EPDM) 발포체의 충격음 저감 특성에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Sohn, Ho-Soung
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2000
  • In order to investigate the possibility of EPDM micro cellular pad (MCP) as an impact sound insulation product, we studied static/dynamic properties and vibration transfer characteristics of EPDM MCP depending on shape, thickness, degrees of foaming by using material test system (MTS) and lab scale mock-up test apparatus. Static/dynamic rigidity is increased when shape is simple. thickness and degrees of foaming low. We could see that dynamic stiffness is proportional to the transmissibility of EPDM MCP. When dynamic stiffness is increased, characteristic peak at transmissibility curve moves high frequency range or snows increase of maximum value of transmissibility. For lab scale mock-up test and finite element method, EPDM MCP shows low vibration velocity and superior mode shape to just concrete plus slab structure. We could confirm that possibility of EPDM MCP as a impact sound insulation product is high.

  • PDF