• Title/Summary/Keyword: mode overlapped

Search Result 28, Processing Time 0.02 seconds

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

A Frequency Resource Assignment Algorithm for FH Radio Using Isotropic Multi Dimension Array (등방 다차원 배열을 이용한 FH 무전기용 주파수 자원 할당 알고리즘)

  • Lee, Seong-Min;Han, Joo-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2006
  • To reduce the interferences between the radio equipments which are operated in frequency hopping mode, the frequency resource should be assigned to each equipment without overlapping when several groups of radio equipments operate in the same area. If the radio equipments are in a different area, the partial frequency overlaying can be permitted. From the isotropic multi-dimensional array, several frequency assignment tables can be extracted for a same area. Also several tables can be extracted for different areas. Since there can be no overlapped frequencies between the tables for the same area, no interference between the radio equipments in an area is guaranteed. The frequencies overlapped between 2 tables for 2 different areas are pre-planed as required. The interference performance in frequency hopping radio can be controlled as desired using the proposed Frequency Resource Assignment Algorithm using Isotropic multi-dimensional Array.

Design of Tunable Flat-top Bandpass Filter Based on Two Long-period Fiber Gratings and Core Mode Blocker

  • Bae, Jin-Ho;Bae, Jun-Kye;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.202-206
    • /
    • 2011
  • We propose a tunable flat-top bandpass filter to pass light in a customized wavelength band by using long-period fiber gratings (LPFG) structure. The LPFG structure is composed of a core mode blocker in between two LPFGs. The bandpass spectrum of the proposed structure is obtained in overlapped wavelength band of two LPFGs operating on the same modes. To analyze the properties, we introduce a mathematical matrix model for the structure. We theoretically demonstrate flexibility of the flat-top bandpass filter with various bandwidths.

Choice Factors of Freight Transport Mode in Korea: Literature Review and Directions for Future Research (국내 화물운송수단 선택요인의 문헌 연구와 향후 연구 방향)

  • Choi, Chang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.1-13
    • /
    • 2018
  • The present study was conducted to analyze transport mode choice factors of shippers in Korea and to suggest policy implications and directions for future research. The findings showed that the research on freight mode choice factors in Korea is somewhat insufficient compared to that of other countries. In order to enhance the research, it is necessary to expand the number of studies and to strengthen the research to reflect characteristics of each transport mode. In particular, it is necessary to focus on identifying the characteristics of multimodal transport, including railway and shipping linked to truck. On the other hand, it was confirmed that the major factors influencing the choice of transport mode of shippers in Korea overlapped with foreign research cases. In addition, the implications for policy were derived when the analysis was separately conducted for Korea and other countries regarding individual transport mode and transport range. These results could be applied to various fields such as policy making to improve the efficiency of shippers' selection of transport mode and the estimation of transport mode choice model.

Effects of Various Baffle Designs on Acoustic Characteristics in Combustion Chamber of Liquid Rocket Engine

  • Sohn, Chae-Hoon;Kim, Seong-Ku;Kim, Young-Mog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.145-152
    • /
    • 2004
  • Effects of various baffle designs on acoustic characteristics in combustion chamber are numerically investigated by adopting linear acoustic analysis. A hub-blade configuration with five blades is selected as a candidate baffle and five variants of baffles with various specifications are designed depending on baffle height and hub position. As damping parameters, natural-frequency shift and damping factor are considered and the damping capacity of various baffle designs is evaluated. Increase in baffle height results in more damping capacity and the hub position affects appreciably the damping of the first radial resonant mode. Depending on baffle height, two close resonant modes could be overlapped and thereby the damping factor for one resonant mode is increased exceedingly. The present procedure based on acoustic analysis is expected to be a useful tool to predict acoustic field in combustion chamber and to design the passive control devices such as baffle and acoustic resonator.

A Study of Secure Mobile Multicast Architecture and Protocol based on Adaptive Service Mode (적응적 서비스 모드에 기반한 이동보안멀티캐스트 구조 및 프로토콜에 관한 연구)

  • 안재영;구자범;박세현;이재일
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.153-172
    • /
    • 2002
  • In this paper, we propose an architecture and a protocol fur Secure Mobile Multicast(SMM) offering efficient and secure multicast services to many mobile nodes. In this framework, we use Indirect and Direct Service Mode adaptively, according to the movement of mobile nodes around the overlapped service area, to provide reliably secure multicast with low latency, minimum key update, and minimum data loss.

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.

Acoustic Analysis of KSR-III Combustion Chamber with Various 5-Blade Baffles under Non-Reacting Condition (5-블레이드 배플이 설치된 로켓엔진 연소실에서의 상온음향 해석)

  • Kim, Hong-Jip;Kim, Seong-Ku;Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.167-171
    • /
    • 2003
  • Acoustic characteristics of baffled combustion chamber to elucidate suppressing effect of baffle on combustion instability are numerically investigated by linear acoustic analysis. A hub-blade baffle of 5 blades is selected as a candidate one and five variants of baffles with various configuration are designed. Resonant-frequency shift and damping factor are analyzed quantitatively as damping parameters. When the hub is located radially at the pressure node, the decrease of resonant frequency and increase of damping factor in 1R mode are dominant. But sub-1T mode is formed within hub, therefore, there would be a possibility of initiating 1T mode in unbaffled region, which would occur another problem. For smaller hub size, four kinds of axial baffle length is selected. As the axial baffle length increases, resonant frequency shift and increase of damping factor of transverse acoustic modes is obtained. Especially, two close acoustic modes such as 1L and 1T could be overlapped for a certain axial length, resulting in extreme increase of damping factor. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

  • PDF

Design and Fabrication of the Spiral Coils for Guided Wave Magnetostrictive Transducers

  • Choi, Myoung-Seon;Heo, Won-Nyoung;Jun, Jong-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.496-503
    • /
    • 2008
  • We propose rectangular type spiral coils with folded comers for the applications to low frequency guided wave magnetostrictive transducers and describe a method for making the proposed coils from insulated electrical wire such as enameled copper wire. Expressions for the electrical properties of the coils are also presented and compared with experimental measurements. An overlapped-2-channel folded-comer spiral-coil array is fabricated and applied to a magnetostrictive strip transducer generating and detecting fundamental torsional mode guided waves. From the results we conclude that the design and fabrication method make it possible to use the magnetostrictive transducers optimized for various guided wave applications and also will greatly help engineers gain easy access to the optimized transducers.