• 제목/요약/키워드: modal transducers

검색결과 15건 처리시간 0.02초

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Third Harmonic Generation of Shear Horizontal Guided Waves Propagation in Plate-like Structures

  • Li, Weibin;Xu, Chunguang;Cho, Younho
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.149-154
    • /
    • 2016
  • The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

노치가 있는 보에서 잔향하는 모드변환 램파의 전기역학적 어드미턴스 전이 (The Evolution of Electromechanical Admittance from Mode-converted Lamb Waves Reverberating on a Notched Beam)

  • 김은진;박현우
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.270-280
    • /
    • 2016
  • 노치가 있는 보에 부착된 압전소자의 전기역학적 어드미턴스 전이과정을 파전달 관점에서 규명한다. 유한요소 해석을 통해 노치가 있는 보에서 잔향하는 램파에 대한 수치해를 구한다. 보에 병치된 압전소자의 분극을 이용하여 노치에 의해 발생하는 모드변환된 램파 신호를 추출한다. 전기역학적 어드미턴스의 전이과정을 보여줄 수 있는 일련의 템포럴 스펙트럼은 모드변환된 램파 신호들을 시간영역에서 순차적으로 절단한 후, 고속 푸리에 변환을 적용하여 계산한다. 절단 시간이 상대적으로 작을 때 이에 대응되는 템포럴 스펙트럼은 입력 주파수 대역의 특성이 지배적이다. 그러나, 절단 시간이 증가함에 따라 입력 주파수 대역 내에 존재하는 보의 모달 특성이 템포럴 스펙트럼에 중대한 영향을 준다. 이는 보에서 잔향하는 모드변환램파가 보의 공진에 기여함을 의미한다. 각 공진주파수 부근에서 템포럴 스펙트럼에 대한 제곱평균제곱근을 계산한다. 모든 공진주파수 부근에서 절단시간에 따라 제곱평균제곱근은 증가한다. 마지막으로, 보의 손상 진단 측면에서 수치해석 결과의 시사점에 대해 논의한다.

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증 (Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification)

  • 송태하;이중호;최종균;이희원
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.