• 제목/요약/키워드: modal properties

검색결과 467건 처리시간 0.034초

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.

가진기를 이용한 강제진동시험에 의한 전기 캐비닛의 실험적 모드특성 분석 (Analysis of Experimental Modal Properties of an Electric Cabinet via a Forced Vibration Test Using a Shaker)

  • 조성국;소기환
    • 한국지진공학회논문집
    • /
    • 제15권6호
    • /
    • pp.11-18
    • /
    • 2011
  • 원자력발전소(이하, 원전)에 설치되는 안전관련 전기기기들의 합리적인 내진검증을 위해서는 사전에 정확한 동특성분석이 필요하다. 이 연구에서는 원전에 설치되는 전기기기 캐비닛 구조를 대상으로 입력 진동의 수준에 따른 모드특성의 변화를 평가하였다. 이를 위해, 실제 전기기기 캐비닛을 시편으로 선정하고 가진 시험기를 이용하여 입력진동에너지의 크기를 변화시켜 가면서 진동시험을 수행하였다. 시험은 캐비닛의 문짝을 부착한 경우와 탈거한 경우로 구분하여 수행하였다. 진동시험을 통하여 계측된 시편의 가속도응답신호와 입력운동신호로부터 진동의 크기에 따라 진동수응답함수를 작성하였다. 다항식회귀분석기법을 이용한 모드분석기법으로 시편의 진동수응답함수를 분석하여 모드특성을 추출하고, 진동수준에 따른 시편의 동특성 변화를 검토하였다. 연구결과, 대상 기기는 입력진동의 크기가 증가할수록 모드진동수와 모드감쇠비가 비선형적으로 변화하는 것을 확인하였다. 문짝이 부착된 경우에는 문짝이 탈거된 경우에 비하여 캐비닛의 모드감쇠가 증가한다.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

모우드 측정을 이용한 관성 모우멘트 도출 (A method to determine moment of inertia properties of an arbitrary shape body by modal testing)

  • 박윤식;정경렬;홍성욱;전혁수;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.102-107
    • /
    • 1986
  • This paper presents a new idea to obtain moment of inertia values of an arbitrary shape body by applying inverse modal transformation technique. A multiaxes inertia pendulum apparatus was designed to measure 6 rigid body modes of a test body. A software was developed to calculate inertia properties as well as the location of center of gravity and total mass of the test body from the measured modal data. The developed method was applied to a simple body of which the inertia properties are known then the obtained values were compared with the known values.

  • PDF

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.

차량 서브프레임의 유한요소 모델의 개선 및 최적화에 대한 연구 (A Study on the F.E. Model Updating and Optimization for Vehicle Subframe)

  • 허덕재;이근수;홍석윤;박태원
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.220-227
    • /
    • 2002
  • This paper describes an integrated approach process to carry out pre-test, model correlation and updating analysis on the sub-frame of a vehicle. In this study, it was found that the modal test could be more efficient when the exciting point was selected on the area with high driving point residue. Such area could be located with the aid of finite element modal analysis. The model correlation was appraised in conjunction with the modal parameters between modal test and finite elements analysis. Also, the finite element model updating was obtained the good resultant using the iteration method based on sensitivity analysis results that carried out the variation of natural frequencies and MAC for the material properties. Finally, optimization of vehicle subframe was carried out the analysis of core location and physical properties by tow steps.

철도교량 동적성능 평가를 위한 동특성 추출 실험연구 (Experimental Evaluation of Modal Properties for Estimation of the Railway Bridge Dynamic Performance)

  • 김성일;김남식;이정휘;이필구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.211-216
    • /
    • 2005
  • Resonance of railroad bridge can be broken out when natural frequency of the bridge coincides with exciting frequency of moving forces. In order to avoid aforementioned unpleasant response of the structure, exact determination of dynamic structural properties is important to understand dynamic behavior of the structure under moving train loads. In the present paper, a 25 meters long full scale IPC girder and 15m Precom girder models were fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with structural status.

  • PDF

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.