• Title/Summary/Keyword: mobile vision system

Search Result 290, Processing Time 0.026 seconds

Human following of Indoor mobile service robots with a Laser Range Finder (단일레이저거리센서를 탑재한 실내용이동서비스로봇의 사람추종)

  • Yoo, Yoon-Kyu;Kim, Ho-Yeon;Chung, Woo-Jin;Park, Joo-Young
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • The human-following is one of the significant procedure in human-friendly navigation of mobile robots. There are many approaches of human-following technology. Many approaches have adopted various multiple sensors such as vision system and Laser Range Finder (LRF). In this paper, we propose detection and tracking approaches for human legs by the use of a single LRF. We extract four simple attributes of human legs. To define the boundary of extracted attributes mathematically, we used a Support Vector Data Description (SVDD) scheme. We establish an efficient leg-tracking scheme by exploiting a human walking model to achieve robust tracking under occlusions. The proposed approaches were successfully verified through various experiments.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Visibility Sensor with Stereo Infrared Light Sources for Mobile Robot Motion Estimation (주행 로봇 움직임 추정용 스테레오 적외선 조명 기반 Visibility 센서)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.108-115
    • /
    • 2011
  • This paper describes a new sensor system for mobile robot motion estimation using stereo infrared light sources and a camera. Visibility is being applied to robotic obstacle avoidance path planning and localization. Using simple visibility computation, the environment is partitioned into many visibility sectors. Based on the recognized edges, the sector a robot belongs to is identified and this greatly reduces the search area for localization. Geometric modeling of the vision system enables the estimation of the characteristic pixel position with respect to the robot movement. Finite difference analysis is used for incremental movement and the error sources are investigated. With two characteristic points in the image such as vertices, the robot position and orientation are successfully estimated.

A Study on the Real-Time Map Building of Mobile Robot Using Stereo Came (스테레오 비전을 이용한 이동로봇의 실시간 지도 작성을 위한 연구)

  • Sung, Yong-Won;Kim, Tae-Min;Lee, Min-Ki;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2729-2731
    • /
    • 2001
  • In this paper, we studied on the real-time environment map building for the mobile robot navigation using the stereo camera system. Distance measurement are necessary to build the environment map. We used a area-based stereo matching for the distance measurement with the stereo camera system. To reduce the computation time, we used DSP processor on the vision board, took a suitable area size for stereo matching, and used hierarchical search method. Using the fast acquired distance values, the environment map was built.

  • PDF

Study on the Real-Time Moving Object Tracking using Fuzzy Controller (퍼지 제어기를 이용한 실시간 이동 물체 추적에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In;Lee Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology (모폴로지 기반의 차영상 분석기법을 이용한 균열검출의 인식)

  • Byun Tae-bo;Kim Jang-hyung;Kim Hyung-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.197-205
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

A Study on Analog and Digital Meter Recognition Based on Image Processing Technique (영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구)

  • 김경호;진성일;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

Trajectory Generation of a Moving Object for a Mobile Robot in Predictable Environment

  • Jin, Tae-Seok;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Development of Mobile Application for Cadastre Information Service (지적정보 서비스 모바일 애플리케이션 개발)

  • Lee, Geun-Sang;Kim, Hyoung-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.55-64
    • /
    • 2012
  • This study developed a mobile application system for serving cadastral information needed to propel diverse cadastral works including cadastral resurvey efficiently. First, BlackPoint-Xr was selected as a spatial client engine to embody the cadastral information system based on mobile device including smart phone and tablet PC. The mobile cadastral information system contains functions such as finding location with GPS based on spatial information such as aerial photo, cadastral map, administrative map, and digital map, parcel search with address and lot number, finding land register including land address, the classification of land, and land price. Especially, this study developed functions which can analyze the measurement of distance, area, slope and cross-section elevation of land to apply construction work and land maintenance project. This system can support efficiently cadastral work and construction project by serving diverse cadastral information to users in field and can be also applied to the field of digital cadastral information.