• Title/Summary/Keyword: mobile ultrasound

Search Result 27, Processing Time 0.021 seconds

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

Studies on Failure Kind Analysis of the Radiologic Medical Equipment in General Hospital (종합병원 진단용방사선장비의 고장유형 분석)

  • Lee, Woo-Cheul;Kim, Jeong-Lae
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 1999
  • This paper included a data analysis of the unit of medical devices using mainternance recording card that had medical devices of unit failure mode, hospital of failure mode and MTBF. The results of the analysis were as follows : 1. Medical devices of unit failure mode was the highest in QC/PM such A hospital as 33.9%, B hospital 30.9%, C hospital 30.3%, second degree was the Electrical and Electronic failure such A hospital as 23.5%, B hospital 25.3%, C hospital 28%, third degree was mechanical failure such A hospital as 19.5%, B hospital 22.5%, C hospital 25.4%. 2. Hospital of failure mode was the highest in Mobile X-ray device(A hospital 62.5%, B hospital 69.5%, C hospital 37.4%), and was the lowest in Sono devices(A hospital 16.76%, B hospital 8.4%, C hospital 7%). 3. Mean time between failures(MTBT) was the highest in SONO devices and was the lowest in Mobile X-ray devices which have 200 - 400 failure hours. 4. Anverage failure ratio was the highest in Mobile X-ray devices(A hospital 31.3%, B hospital 34.8%, C hospital 18.7%), and was the lowest in Sono(Ultrasound) devices (A hospital 8.4%, B hospital 4.2%, C hospital 3.5%). 5. Failure ratio results of medical devices according to QC/PM part of unit failure mode were as follows ; A hospital was the highest part of QC/PM (50%) in Mamo X-ray device and was the lowest part of QC/PM(26.4%) in Castro X-ray. B hospital was the highest part of QC/PM(56%) in Mobile X-ray device, and the lowest part of QC/PM(12%) in Gastro X-ray. C hospital was the highest part of QC/PM(60%) in R/F X-ray device, and the lowest a part of QC/PM(21%) in Universal X-ray. It was found that the units responsible for most failure decreased by systematic management. We made the preventive maintenance schedule focusing on adjustement of operating and dust removal.

  • PDF

Design and Implementation of Mobile ]Respiration Detection Diagnostic System using Ultrasound Sensing Method fficient Multicasting Environment (초음파 센싱 방식을 이용한 이동형 호흡량 측정 진단기의 설계 및 구현)

  • 김동학;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.509-515
    • /
    • 2004
  • Pulmonary function tests are widely used to diagnose and determine patients' therapy in clinic. And it was also applied in the research of the physiology and dynamics for lung disease. Among the pulmonary function tests, spirometry is the most easy and economic test. Spirometers are medical instruments that measure the instantaneous rate of volume flow of respired Bas. The mechanical spirometer was mostly used in the past. Up to the present, the most popular method of spirometer is the differential pressure technique with which change in the volume of flow are transferred to change in pressure. This kind of instrument suffers from several limitations, pressure drop, difficulty in maintenance and short period of calibration. Therefore, this study has begun to implement ultrasound spirometer, which is free of pressure loss and has wide range, focusing on the flow measurement technique and diagnostic algorithm.

Ion chromatographic determination of chlorite and chlorate in chlorinated food using a hydroxide eluent

  • Kim, Dasom;Jung, Sungjin;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • This study was conducted to develop an analytical technique for determination of chlorite and chlorate concentrations in fresh-cut food and dried fish products by an ion chromatography/conductivity detection method using a hydroxide mobile phase. Deionized water was added to homogenized samples, which were then extracted by ultrasound extraction and centrifuged at high speed (8,500 rpm). Subsequently, a Sep-Pak tC18 cartridge was used to purify the supernatant. Chlorite and chlorate ions were separated using 20 mM KOH solution as the mobile phase and Dionex IonPac AS27 column as the stationary phase. Ethylenediamine was used as sample preservative and dibromoacetate was added to adjust for the disparity in extraction efficiencies between the food samples. The method detection limit) for chlorite and chlorate were estimated to be 0.2 mg/kg and 0.1 mg/kg, respectively, and the coefficient of determination ($r^2$) that denotes the linearity of their calibration curves were correspondingly measured to be 0.9973 and 0.9987. The recovery rate for each ion was 92.1 % and 96.3 %, with relative standard deviations of 7.47 % and 6.18 %, respectively. Although neither chlorite nor chlorate was detected in the food samples, the analytical technique developed in this study may potentially be used in the analysis of disinfected food products.

Design of a Cross-obstacle Neural Network Controller using Running Error Calibration (주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계)

  • Lim, Shin-Teak;Yoo, Sung-Goo;Kim, Tae-Yeong;Kim, Yeong-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.463-468
    • /
    • 2010
  • An obstacle avoidance method for a mobile robot is proposed in this paper. Our research was focused on the obstacles that can be found indoors since a robot is usually used within a building. It is necessary that the robot maintain the desired direction after successfully avoiding the obstacles to achieve a good autonomous navigation performance for the specified project mission. Sensors such as laser, ultrasound, and PSD (Position Sensitive Detector) can be used to detect and analyze the obstacles. A PSD sensor was used to detect and measure the height and width of the obstacles on the floor. The PSD sensor was carefully calibrated before measuring the obstacles to achieve better accuracy. Data obtained from the repeated experiments were used to plot an error graph which was fitted to a polynomial curve. The polynomial equation was used to navigate the robot. We also obtained a direction-error model of the robot after avoiding the obstacles. The prototypes for the obstacle and direction-error were modeled using a neural network whose inputs are the obstacle height, robot speed, direction of the wheels, and the error in direction. A mobile robot operated by a notebook computer was setup and the proposed algorithm was used to navigate the robot and avoid the obstacles. The results showed that our algorithm performed very well during the experiments.

Optimization and validation of HPLC/DAD method for the determination of adenosine and cordycepin in cordyceps products

  • Sasikarn Panpraneecharoen;Tisorn Chatrakoon;Sompong Sansenya;Saowapa Chumanee
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.152-160
    • /
    • 2023
  • Adenosine and cordycepin are bioactive compounds with health benefits. Therefore, both substances are often used to assess the quality of Cordyceps products. Optimization and validation of the HPLC/DAD method for determining two nucleosides were studied. The samples were prepared using an ultrasound-assisted extraction (ultrasonic bath). The result was optimal conditions for aqueous extraction, an extraction time of 35 min, and an extraction temperature of 40 ℃. The Chromatographic separation was achieved using a reverse phase column (InfinityLab Poroshell 120 EC-C18, 4.6 × 250 mm, 2.7 ㎛) at 30 ℃ with a mobile phase gradient elution of water and methanol at a flow rate of 0.7 mL/min. The eluents were monitored via a diode array detector at 260 nm. Two nucleosides were separated by less than 12 min after injection. The developed method was found to be excellent linear (r2 > 0.9999), accurate (% recovery 95.34-98.51), and precise (% relative standard deviation < 2.0). The limit of detection (LOD) and quantification (LOQ) were 0.45 and 1.38 mg/mL for adenosine and 0.47 and 1.43 mg/mL for cordycepin, respectively. This method was satisfactory for simultaneously quantitating two nucleoside contents, which were used to evaluate Cordyceps products.

Extraction of Genistein and Formononetin from Sophoraflavescens Aiton using Ultrasonic wave (초음파를 이용한 고삼에 포함된 Genistein 및 Formononetin의 추출)

  • Kim, Young Sik;Lee, Kwang Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.258-261
    • /
    • 2009
  • In this work, we the ettect on extraction amounts and general composition content of phytoestrogen genistein and formononetin extracted from Sophoraflavescens Aiton by various ultrasonic waves(35, 72, and 170 KHz) and extraction time(30, and 60 min) were compared using extraction solvent water 100%. The pretreatment step was composed of ultrasonic waves extraction, filtration, concentration, and membrane filtration. The extracted sample was analyzed by reversed-phase high performance liquid chromatography(RP-HPLC). And the mobile phase applied was linearly changed with A/B of 80/20~65/35 vol% for 60 min(A water/acetic acid, 99.9/0.1 vol%, B acetonitrile/acetic acid, 99.9/0.1 vol%). The experimental results, general composition carbohydrate(0.255 to 0.413%) excepts, other ingredients was confirmed almost similarly. Also, The highest yield of extraction amount 3.17g was obtained by ultrasonic waves with a frequency of 170 KHz and an extraction time of 60 min. This work offers would be useful for chemical and biological studies of natural plants and its products.