• Title/Summary/Keyword: mobile sensing

Search Result 467, Processing Time 0.038 seconds

Information for Urban Risk Management: the Role of Remote and Close Sensing

  • Hofstee, Paul;Genderen, John van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.162-164
    • /
    • 2003
  • The multi-disciplinary research project Strengthening Local Authorities in Risk Management (SLARIM), initiated by ITC, includes three case study cities in Asia. An important question is: what are the essential data for risk management and how to access such data. The role of common sources (e.g. census data), data derived from remote sensing (high-resolution satellite imagery, aerial photos), and data from close sensing (field observation, including mobile GIS) to acquire essential risk management data will be discussed. Special attention is given to the question of the minimum area and to disaggregating population data. A few examples are given of Kathmandu / Lalitpur, Nepal.

  • PDF

Landmark Detection Based on Sensor Fusion for Mobile Robot Navigation in a Varying Environment

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • We propose a space and time based sensor fusion method and a robust landmark detecting algorithm based on sensor fusion for mobile robot navigation. To fully utilize the information from the sensors, first, this paper proposes a new sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable an accurate measurement. Exploration of an unknown environment is an important task for the new generation of mobile robots. The mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. The newly proposed, STSF (Space and Time Sensor Fusion) scheme is applied to landmark recognition for mobile robot navigation in an unstructured environment as well as structured environment, and the experimental results demonstrate the performances of the landmark recognition.

Architecture Support for Context-aware Adaptation of Rich Sensing Smartphone Applications

  • Meng, Zhaozong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.248-268
    • /
    • 2018
  • The performance of smartphone applications are usually constrained in user interactions due to resource limitation and it promises great opportunities to improve the performance by exploring the smartphone built-in and embedded sensing techniques. However, heterogeneity in techniques, semantic gap between sensor data and usable context, and complexity of contextual situations keep the techniques from seamless integration. Relevant studies mainly focus on feasibility demonstration of emerging sensing techniques, which rarely address both general architectures and comprehensive technical solutions. Based on a proposed functional model, this investigation provides a general architecture to deal with the dynamic context for context-aware automation and decision support. In order to take advantage of the built-in sensors to improve the performance of mobile applications, an ontology-based method is employed for context modelling, linguistic variables are used for heterogeneous context presentation, and semantic distance-based rule matching is employed to customise functions to the contextual situations. A case study on mobile application authentication is conducted with smartphone built-in hardware modules. The results demonstrate the feasibility of the proposed solutions and their effectiveness in improving operational efficiency.

Geometric analysis of mobile mapping images sequence

  • Kang, Zhizhong;Zhang, Zuxun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.183-185
    • /
    • 2003
  • Spatially referenced mobile mapping (MM) images contain rich information of man-made objects , e.g. road centerlines, buildings, light poles, traffic signs ,billboards and line trees etc. Therefore, the applications in transportation, urban 3D reconstruction, utility management are implemented increasingly. It’s a fundamental issue lies in MM image process that how to orient this image in the object space including interior orientation of camera and the exterior orientation of image. In this paper, the algorithm of automatic acquirement of DC (Digital Camera) parameters based on MM images is illustrated. And then, the mapping between image space and object space for MM images is described.

  • PDF

A 4S Design on Mobile Ad hoc Networks

  • Lee, Eun-Kyu;Kim, Mi-Jeong;Oh, Byoung-Woo;Kim, Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.81-89
    • /
    • 2003
  • A provision of spatial information is expected to make a market explosion in various fields. A distribution of spatial data on wireless mobile environments indicates a huge expansion of mobile technology as well as a spread of geospatial applications. For high-qualified spatial information, the 4S technology Project that is integrating four kinds of spatial systems is currently being executed with the goal of nationwide integration of spatial data and spatial information systems. In terms of network environments, a mobile ad hoc network where mobile terminals communicate with each other without any infrastructures has been standardized for the next generation mobile wireless network. With respect to the future technologies for spatial information, it is necessary to design 4S applications on mobile ad hoc networks. This paper addresses the issue, which is proposing design concepts for distributing 4S spatial data on mobile ad hoc networks and for ad hoc styled 4S applications.

A Study on the Recognition Method of the Stair Size for the Climbing Mobile Robot (이동 로보트의 계단 승월을 위한 계단 크기 인식 기법에 관한 연구)

  • 김승범;이응혁;김병수;김승호;민홍기;홍승홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1269-1279
    • /
    • 1995
  • A mobile robot in a nuclear power plant is usually needed to equip the ability of going up and down stairs for a some kind of inspection. For this purpose, it is necessary for the mobile robot to figure out the size of stairs laid on a navigation path to gurantee robot's moving freely. In this paper, to measure the size of stairs existing in front of a mobile robot we designed the stair size recognition unit which can measure the stair's height and width using an ultrasonic sensor and/or a CCD camera. Also to obtain higher reliability of ultrasonic sensing data we proposed the horizontal sensing method. On the assupmtions that the mobile robot generates a trajectory while ascending stairs, we simulated it on a IBM compatible computer. The result showed that the suggested method satisfied our purpose. In a stair size estimation, the detected stair's height error was about .+-.3mm, and width was about .+-.5mm.

  • PDF

Circuit Design of DRAM for Mobile Generation

  • Sim, Jae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • In recent few years, low-power electronics has been a leading drive for technology developments nourished by rapidly growing market share. Mobile DRAM, as a fundamental block of hand-held devices, is now becoming a product developed by limitless competition. To support application specific mobile features, various new power-reduction schemes have been proposed and adopted by standardization. Tightened power budget in battery-operated systems makes conventional schemes not acceptable and increases difficulty of the circuit design. The mobile DRAM has successfully moved down to 1.5V era, and now it is about to move to 1.2V. Further voltage scaling, however, presents critical problems which must be overcome. This paper reviews critical issues in mobile DRAM design and various circuit schemes to solve the problems. Focused on analog circuits, bitline sensing, IO line sensing, refresh-related schemes, DC bias generation, and schemes for higher data rate are covered.

Educational Indoor Autonomous Mobile Robot System Using a LiDAR and a RGB-D Camera (라이다와 RGB-D 카메라를 이용하는 교육용 실내 자율 주행 로봇 시스템)

  • Lee, Soo-Young;Kim, Jae-Young;Cho, Se-Hyoung;Shin, Chang-yong
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.44-52
    • /
    • 2019
  • We implement an educational indoor autonomous mobile robot system that integrates LiDAR sensing information with RGB-D camera image information and exploits the integrated information. This system uses the existing sensing method employing a LiDAR with a small number of scan channels to acquire LiDAR sensing information. To remedy the weakness of the existing LiDAR sensing method, we propose the 3D structure recognition technique using depth images from a RGB-D camera and the deep learning based object recognition algorithm and apply the proposed technique to the system.

Energy Use Coordinator for Multiple Personal Sensor Devices

  • Rhee, Yunseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2017
  • Useful continuous sensing applications are increasingly emerging as a new class of mobile applications. Meanwhile, open, multi-use sensor devices are newly adopted beyond smartphones, and provide huge opportunities to expand potential application categories. In this upcoming environment, uncoordinated use of sensor devices would cause severe imbalance in power consumption of devices, and thus result in early shutdown of some sensing applications depending on power-hungry devices. In this paper, we propose EnergyCordy, a novel inter-device energy use coordination system; with a system-wide holistic view, it coordinates the energy use of concurrent sensing applications over multiple sensor devices. As its key approach, we propose a relaxed sensor association; it decouples the energy use of an application from specific sensor devices leveraging multiple context inference alternatives, allowing flexible energy coordination at runtime. We demonstrated the effectiveness of EnergyCordy by developing multiple example applications over custom-designed wearable senor devices. We show that EnergyCordy effectively coordinates the power usage of concurrent sensing applications over multiple devices and prevent undesired early shutdown of applications.

A Research and Development of Dynamic Recognition Technique for Enhancing Reliability of Mobile Sensing Service (모바일 감지 서비스의 신뢰성 향상을 위한 동적 인지 기법 연구 및 개발)

  • Eun, Yun-Kyu;Kim, Chul-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3412-3420
    • /
    • 2015
  • Smartphone has become an essential element in our daily life and built-in sensors of the smartphone can be utilized in order to recognize of user's situation. However, it is lack of research for safety and accident prevention by dynamic situation recognition. In this paper, we propose a technique that can be recognized risk situation dynamically using accelerometer, microphone and GPS sensor of mobile device. We propose an architecture and process for sensing techniques of Dynamic Recognition Technique, and develop the mobile application for verifying the suitability of the architecture.