• Title/Summary/Keyword: mobile robot control

Search Result 1,465, Processing Time 0.032 seconds

A Study on Development of Remote Control Robot Using WPAN Platform and LEGO Mindstorms NXT (WPAN Platform과 레고 마인드스톰 NXT를 이용한 원격제어 로봇 개발에 대한 연구)

  • Lee, Min-Cheol;Song, Young-Ho;Lee, Young-Chul;Kim, In-Hwan;Jeong, Gu-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.961-964
    • /
    • 2009
  • 본 논문에서는 휴대폰과 LEGO Mindstorms NXT를 이용한 원격제어로봇 개발 모델을 제안하고 이를 기반으로 원격제어 로봇을 설계하였다. 제안하는 원격제어로봇 개발 방법은 LEGO Mindstorms NXT를 이용한 하드웨어 설계, 다양한 Tool을 이용한 소프트웨어 설계, Host System의 응용프로그램 개발로 구성되며, Host System으로는 WPAN Platform을 탑재한 휴대폰을, 통신 방식으로는 블루투스를 적용한다.

Implementation of an Autonomous Mobile Robot Using Sensor Fusion with Passive RFID and Range Sensors (RFID 정보와 거리센서 융합을 통한 자율주행로봇의 구현)

  • Kim, Sang-Hon;Song, Yong-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.249-252
    • /
    • 2011
  • 본 논문은 실내 공간에서 RFID와 센서를 이용하여 이동로봇이 자기 위치를 파악하고 목표 물체를 인식할 수 있는 기법을 제안한다. RFID를 지면과 목표물체에 설치하고 로봇은 리더기와 다양한 센서를 갖춤으로써 이동시 자기 위치를 파악하고 물체로부터도 고유정보를 얻을 수 있게 구성하였다. 초음파 센서 신호의 귀환시간을 활용하여 전방 물체의 거리를 추출하며 바닥의 RFID로부터 이미 획득한 자기 위치를 활용하여 물체의 절대 위치를 구한다. 이는 로봇을 중심으로한 경로지도를 실시간으로 작성하는 것이 가능하며, 실내의 구조 및 목표 물체의 위치등을 포함한 전체적인 지도를 작성할 수 있다. 최종적으로는 최적의 경로 계획을 세워 로봇이 목표 위치로 이동하거나 자율적 탐색이 가능하도록 한다.

Multi-functional Automated Cultivation for House Melon;Development of Tele-robotic System (시설멜론용 다기능 재배생력화 시스템;원격 로봇작업 시스템 개발)

  • Im, D.H.;Kim, S.C.;Cho, S.I.;Chung, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.186-195
    • /
    • 2008
  • In this paper, a prototype tele-operative system with a mobile base was developed in order to automate cultivation of house melon. A man-machine interactive hybrid decision-making system via tele-operative task interface was proposed to overcome limitations of computer image recognition. Identifying house melon including position data from the field image was critical to automate cultivation. And it was not simple especially when melon is covered partly by leaves and stems. The developed system was composed of 5 major modules: (a) main remote monitoring and task control module, (b) wireless remote image acquisition and data transmission module, (c) three-wheel mobile base mounted with a 4 dof articulated type robot manipulator (d) exchangeable modular type end tools, and (e) melon storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. Once task was selected from the task control and monitoring module, the analog signal of the color image of the field was captured and transmitted to the host computer using R.F. module by wireless. A sequence of algorithms to identify location and size of a melon was performed based on the local image processing. Laboratory experiment showed the developed prototype system showed the practical feasibility of automating various cultivating tasks of house melon.

Study on the Real-Time Moving Object Tracking using Fuzzy Controller (퍼지 제어기를 이용한 실시간 이동 물체 추적에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In;Lee Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology (모폴로지 기반의 차영상 분석기법을 이용한 균열검출의 인식)

  • Byun Tae-bo;Kim Jang-hyung;Kim Hyung-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.197-205
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter (듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발)

  • Seung, Ji-Hoon;Lee, Deok-Jin;Ryu, Ji-Hyoung;Chong, Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.

Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks (인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구)

  • Kim, Donggu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

AdaBoost-based Real-Time Face Detection & Tracking System (AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발)

  • Kim, Jeong-Hyun;Kim, Jin-Young;Hong, Young-Jin;Kwon, Jang-Woo;Kang, Dong-Joong;Lho, Tae-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

3D Range Measurement using Infrared Light and a Camera (적외선 조명 및 단일카메라를 이용한 입체거리 센서의 개발)

  • Kim, In-Cheol;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1005-1013
    • /
    • 2008
  • This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.

Door Detection with Door Handle Recognition based on Contour Image and Support Vector Machine (외곽선 영상과 Support Vector Machine 기반의 문고리 인식을 이용한 문 탐지)

  • Lee, Dong-Wook;Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1226-1232
    • /
    • 2010
  • A door can serve as a feature for place classification and localization for navigation of a mobile robot in indoor environments. This paper proposes a door detection method based on the recognition of various door handles using the general Hough transform (GHT) and support vector machine (SVM). The contour and color histogram of a door handle extracted from the database are used in GHT and SVM, respectively. The door recognition scheme consists of four steps. The first step determines the region of interest (ROI) images defined by the color information and the environment around the door handle for stable recognition. In the second step, the door handle is recognized using the GHT method from the ROI image and the image patches are extracted from the position of the recognized door handle. In the third step, the extracted patch is classified whether it is the image patch of a door handle or not using the SVM classifier. The door position is probabilistically determined by the recognized door handle. Experimental results show that the proposed method can recognize various door handles and detect doors in a robust manner.