• Title/Summary/Keyword: mobile malware

Search Result 70, Processing Time 0.027 seconds

Android Malware Detection Using Auto-Regressive Moving-Average Model (자기회귀 이동평균 모델을 이용한 안드로이드 악성코드 탐지 기법)

  • Kim, Hwan-Hee;Choi, Mi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1551-1559
    • /
    • 2015
  • Recently, the performance of smart devices is almost similar to that of the existing PCs, thus the users of smart devices can perform similar works such as messengers, SNSs(Social Network Services), smart banking, etc. originally performed in PC environment using smart devices. Although the development of smart devices has led to positive impacts, it has caused negative changes such as an increase in security threat aimed at mobile environment. Specifically, the threats of mobile devices, such as leaking private information, generating unfair billing and performing DDoS(Distributed Denial of Service) attacks has continuously increased. Over 80% of the mobile devices use android platform, thus, the number of damage caused by mobile malware in android platform is also increasing. In this paper, we propose android based malware detection mechanism using time-series analysis, which is one of statistical-based detection methods.We use auto-regressive moving-average model which is extracting accurate predictive values based on existing data among time-series model. We also use fast and exact malware detection method by extracting possible malware data through Z-Score. We validate the proposed methods through the experiment results.

Mobile Botnet Attacks - an Emerging Threat: Classification, Review and Open Issues

  • Karim, Ahmad;Ali Shah, Syed Adeel;Salleh, Rosli Bin;Arif, Muhammad;Noor, Rafidah Md;Shamshirband, Shahaboddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1471-1492
    • /
    • 2015
  • The rapid development of smartphone technologies have resulted in the evolution of mobile botnets. The implications of botnets have inspired attention from the academia and the industry alike, which includes vendors, investors, hackers, and researcher community. Above all, the capability of botnets is uncovered through a wide range of malicious activities, such as distributed denial of service (DDoS), theft of business information, remote access, online or click fraud, phishing, malware distribution, spam emails, and building mobile devices for the illegitimate exchange of information and materials. In this study, we investigate mobile botnet attacks by exploring attack vectors and subsequently present a well-defined thematic taxonomy. By identifying the significant parameters from the taxonomy, we compared the effects of existing mobile botnets on commercial platforms as well as open source mobile operating system platforms. The parameters for review include mobile botnet architecture, platform, target audience, vulnerabilities or loopholes, operational impact, and detection approaches. In relation to our findings, research challenges are then presented in this domain.

A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique (정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Oh, Soo-hyun;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2019
  • Malware infringement attacks are continuously increasing in various environments such as mobile, IOT, windows and mac due to the emergence of new and variant malware, and signature-based countermeasures have limitations in detection of malware. In addition, analytical performance is deteriorating due to obfuscation, packing, and anti-VM technique. In this paper, we propose a system that can detect malware based on machine learning by using similarity hashing-based pattern detection technique and static analysis after file classification according to packing. This enables more efficient detection because it utilizes both pattern-based detection, which is well-known malware detection, and machine learning-based detection technology, which is advantageous for detecting new and variant malware. The results of this study were obtained by detecting accuracy of 95.79% or more for benign sample files and malware sample files provided by the AI-based malware detection track of the Information Security R&D Data Challenge 2018 competition. In the future, it is expected that it will be possible to build a system that improves detection performance by applying a feature vector and a detection method to the characteristics of a packed file.

Android Botnet Detection Using Hybrid Analysis

  • Mamoona Arhsad;Ahmad Karim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.704-719
    • /
    • 2024
  • Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.

A Study on Detection of Malicious Android Apps based on LSTM and Information Gain (LSTM 및 정보이득 기반의 악성 안드로이드 앱 탐지연구)

  • Ahn, Yulim;Hong, Seungah;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.641-649
    • /
    • 2020
  • As the usage of mobile devices extremely increases, malicious mobile apps(applications) that target mobile users are also increasing. It is challenging to detect these malicious apps using traditional malware detection techniques due to intelligence of today's attack mechanisms. Deep learning (DL) is an alternative technique of traditional signature and rule-based anomaly detection techniques and thus have actively been used in numerous recent studies on malware detection. In order to develop DL-based defense mechanisms against intelligent malicious apps, feeding recent datasets into DL models is important. In this paper, we develop a DL-based model for detecting intelligent malicious apps using KU-CISC 2018-Android, the most up-to-date dataset consisting of benign and malicious Android apps. This dataset has hardly been addressed in other studies so far. We extract OPcode sequences from the Android apps and preprocess the OPcode sequences using an N-gram model. We then feed the preprocessed data into LSTM and apply the concept of Information Gain to improve performance of detecting malicious apps. Furthermore, we evaluate our model with numerous scenarios in order to verify the model's design and performance.

Enhanced Method for Preventing Malware by Detecting of Injection Site (악성코드 인젝션 사이트 탐지를 통한 방어효율 향상방안)

  • Baek, Jaejong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1290-1295
    • /
    • 2016
  • Recently, as mobile internet usage has been increasing rapidly, malware attacks through user's web browsers has been spreading in a way of social engineering or drive-by downloading. Existing defense mechanism against drive-by download attack mainly focused on final download sites and distribution paths. However, detection and prevention of injection sites to inject malicious code into the comprised websites have not been fully investigated. In this paper, for the purpose of improving defense mechanisms against these malware downloads attacks, we focus on detecting the injection site which is the key source of malware downloads spreading. As a result, in addition to the current URL blacklist techniques, we proposed the enhanced method which adds features of detecting the injection site to prevent the malware spreading. We empirically show that the proposed method can effectively minimize malware infections by blocking the source of the infection spreading, compared to other approaches of the URL blacklisting that directly uses the drive-by browser exploits.

A Study on Tools for Android Malware Analysis

  • Almokhtar, Ali;Kwon, Dong-Hyun;Paek, Yun-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.510-512
    • /
    • 2014
  • Malware Analysis tools are being main topic research for many mobile security companies, in this survey, we are trying to go through the most popular tools used to find out the malicious codes and suspected android programs through reverse engineering process. There are so many malware tools have been made and implemented and some of them are efficient enough and others are quite slow and consuming high processing, however we are going to compare briefly some of them.

A Study on Protection Model of Propagation through Smartphone Malware Analysis (스마트폰 악성코드 분석을 통한 확산 방지 모델에 관한 연구)

  • Lim, Su-Jin;Lee, Jung-Hyun;Kang, Hyung;Park, Won-Hyung;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Recently, the number of internet users using smartphone is increasing worldwide, and the interest in the smartphone malware is increasing. Especially, since mobile malware are occurring to the smartphones using Symbian or Windows Mobiles in the abroad, it is necessary to have an action plan against these mal wares. This paper describes the possible security threat through the analysis of the mal wares occurred after 2004. Also we present a model for the future propagation prevention system which can cope with domestic smartphone mal wares.

A Study on the New Vulnerability of Inducing Service Charge Doctoring SSID of Smartphone Based on Android (안드로이드폰 SSID 변조를 통한 새로운 과금 유발 취약점에 관한 연구)

  • Heo, Geon-Il;Yoo, Hong-Ryul;Park, Chan-Uk;Park, Won-Hyung
    • Convergence Security Journal
    • /
    • v.10 no.4
    • /
    • pp.21-30
    • /
    • 2010
  • Wireless network is one of the 2010's most important security issues. As smartphone is popularize, the number of Wireless Internet users is really growing and wireless AP spring up everywhere. But most wireless AP haven't being managed properly in terms of security, Wireless Internet users also don't recognize important of security. This situation causes grave security threats. This paper design and analyze a new cyber attack whose it circulates malware via QR code and activates Mobile AP to induce service charge. The new vulnerability we suggest forces to activate Mobile AP of smartphone based on Android and responds to all Probe Request are generated around, and brings induction of service charge and communication problems in its train.

Probabilistic K-nearest neighbor classifier for detection of malware in android mobile (안드로이드 모바일 악성 앱 탐지를 위한 확률적 K-인접 이웃 분류기)

  • Kang, Seungjun;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.817-827
    • /
    • 2015
  • In this modern society, people are having a close relationship with smartphone. This makes easier for hackers to gain the user's information by installing the malware in the user's smartphone without the user's authority. This kind of action are threats to the user's privacy. The malware characteristics are different to the general applications. It requires the user's authority. In this paper, we proposed a new classification method of user requirements method by each application using the Principle Component Analysis(PCA) and Probabilistic K-Nearest Neighbor(PKNN) methods. The combination of those method outputs the improved result to classify between malware and general applications. By using the K-fold Cross Validation, the measurement precision of PKNN is improved compare to the previous K-Nearest Neighbor(KNN). The classification which difficult to solve by KNN also can be solve by PKNN with optimizing the discovering the parameter k and ${\beta}$. Also the sample that has being use in this experiment is based on the Contagio.