• Title/Summary/Keyword: mixture phenomena

Search Result 225, Processing Time 0.025 seconds

An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames (미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구)

  • Choe, Gyeong-Min;Jang, In-Gap;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.

Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes (固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

Numerical Study on Characteristics of Low-Frequency Noise in a Cylindrical Combustor (원통형 연소기 내의 저주파 소음특성에 관한 수치적 연구)

  • 김재헌;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.492-497
    • /
    • 1998
  • Thermoacoustic oscillation is a significant problem in cylindrical-type combustors such as common internal combustion engines, industrial furnaces, gas turbine, etc. This kind of low frequency oscillation can give rise to serious troubles such as the destruction of system or producing of a strong noise. Accurate numerical simulation of thermoacoustic phenomena is a complex and challenging problem. Especially, considering the reaction of mixture intensifies the difficulty of analysis. Like as other simulations of the aerodynamics and aeroacoustics, direct computation of thermoacoustic phenomena requires that the Navier-Stokes equations be solved using accurate numerical differentiation and time-marching schemes, with non-reflecting boundary conditions. In this study,, numerical approach aims at qualitative analysis and efficient prediction of problem, not at the development of an accurate scheme. Overally speaking, numerical prediction is reasonably matched with experimental result.

  • PDF

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF

Reduction of Temporal Image Sticking in AC Plasma Display Panels through the Use of High He Contents

  • Park, Choon-Sang;Kim, Sun-Ho;Kim, Jae-Hyun;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • The temporal dark- and bright-image sticking phenomena were examined relative to the He contents under 11% Xe content in the 50-in HD and FHD AC-PDPs with a ternary gas mixture (Xe-He-Ne). To compare the temporal dark- and bright-image sticking phenomena under various He contents, the differences in the disappearing time, display luminance, perceived luminance, infrared emission, color coordinate, color temperature, and discharge current before and after discharge were measured under 0, 35, 50, and 70% He contents. It was found that temporal dark- and bright-image sticking were reduced in proportion to the increase in He %. Thus, a high He content contributes to the reduction of temporal dark- and bright-image sticking.

Scattering analysis of laser beam drilling in porous ceramic materials (극초단 레이저를 이용한 기공성 세라믹 드릴링시 발생하는 레이저빔 산란해석)

  • Choi, Hae Woon
    • Laser Solutions
    • /
    • v.15 no.4
    • /
    • pp.6-11
    • /
    • 2012
  • Laser beam can be either absorbed or scattered in porous ceramic material and its optical characteristics need to be understood. Electro-magnetic multiphysics software was used to simulate and understand the actual scattering phenomena in porous materials. 785nm femtosecond laser was irradiated on the surface of ceramic material and strong scattering occurred in drilling process. The computer results showed the scattering and absorption phenomena of Aluminum oxide were a mixture of dielectric and metallic material. The computer simulation showed the laser beam was almost extinct at the aspect rate of 5 approximately.

  • PDF

Modeling of Numerical Simulation in Powder Injection Molding Filling Process (분말사출성형 충전공정에 대한 수치모사 모델)

  • 권태현;강태곤
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.245-250
    • /
    • 2002
  • In this paper we presented numerical method for the simulation of powder injection molding filling process, which is one of the key processes in powder injection molding. Rheological properties of powder binder mixture such as slip phenomena and yield stress were introduced into the numerical analysis model of powder injection molding filling simulation. Numerical model can be classified into two types. One is 2.5D model which can be introduced to a arbitrary thin geometry and the other is full 3D model which can be applied to a general 3D shape. For 2.5D model we showed the validity of our CAE system with several verification examples. Finally we suggested flow analysis model for 3D powder injection molding filling simulation.

The Analysis of Ventilation of Road Tunnel in Fire (도로터널 화재시의 환기분석)

  • Kom, Sung-Joon;Ryu, Jin-Woong
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.9-13
    • /
    • 2003
  • Numerical experiments are done by a commercial code, PHOENICS to evaluate the backlayer phenomenon of smoke in case of the road tunnel fire. The independent and dependent variables are ventilation air velocity and the length of backlayer of smoke respectively. Hybrid scheme and ${\kappa}-{\varepsilon}$ turbulence model are adopted in the simulation process and mass residual is used as a convergence criterion. The experimental results say that the length of backlayer is reduced with the increase of ventilating air velocity and that there is a critical air velocity which prevents from the onset of backlayering phenomena. One finds that there is a fresh air region near the bottom of tunnel which could make the passenger escape safely from the polluted region by smoke. These phenomena come from the vertical stratification of the smoke air mixture in the tunnel.

  • PDF

Effects of Steel Fiber, Zircon, and Cashew in the Brake Friction Materials on Creep Groan Phenomena (자동차 브레이크용 마찰재 내의 강철섬유, 지르콘, 캐슈가 크립 그론에 미치는 영향)

  • Jang, Ho;Lee, Kang-Sun;Lee, Eun-Ju;Jeong, Geun-Joong;Song, Hyun-Woo
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • Friction characteristics of a low-steel friction material were examined to investigate creep groan phenomena. The amount of three ingredients (steel fiber, $ZrSiO_4$, cashew) were changed to produce test specimens using a constrained mixture design. Tribological properties of the friction material specimens were obtained by using a 1/5 scale dynamometer. Results showed that the amount of three different ingredients strongly affected the level of friction coefficient and the difference between the static friction coefficient and the kinetic friction coefficient $({\Delta}{\mu}).\;ZrSiO_4$ and steel fiber tended to increase the average friction coefficient and aggravated the stick-slip phenomena suggesting high creep groan propensity. On the other hand, cashew tended to decrease average friction coefficient and ${\Delta}{\mu}$.

An Experimental Study on the Combustion Characteristics with Superadiabatic Combustor in Porous Media (다공성물질을 이용한 초단열 연소장치에서의 연소특성의 실험적 연구)

  • Chae, J.O.;Dobrego, K.V.;Sim, M.S.;Chung, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.399-405
    • /
    • 1994
  • Beacuse of the energy resources exhaustion, the aggravating environmental air pollution and the smoke phenomena etc., the importance of clean gas fuel compared with liquid fuel is highly considered in recent years. The combustion system which consists of porous media is actively studied as a new method for solving above problems. Therefore, excess enthalpy combustion using porous media was interested by many researchers and investigated through numerical and experimental analysis. In this study, the simplified combustor has the unique combustion characteristics of mixture gas preheated effect using radiative and convective heat energy by changing the flow passage of unburned gas with solenoid valves and has the intensive excess enthalpy phenomena As the result of according to reduce equivalence ratio, flame temperature was remarkably higher than adiabatic flame temperature. This show the ability of super-lean combustion.

  • PDF