• Title/Summary/Keyword: mixture oil

Search Result 670, Processing Time 0.049 seconds

An investigation on the in si.tu measurement of the oil-concentration

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2001
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method is to extract the working mixture and then to measure the oil weight. In this study, oil concentration is measured in si.tu way without any extraction of the working fluid. Based on the measurement, a working equation is presented as follows, C=a +b x t +c x $t^2$ +(d + e x t +f x $t^2$) x SG. C is oil concentration, t is temperature($^{\circ}C). SG Is specific gravity of mixture and a~f is coefficients The oil concentration ranges over 0~l2 wt% and the temperature ranges over 20~50$^{\circ}C. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/P0E oil liquid mixtures.

  • PDF

An investigation on the in si.tu measurement of the oil-concentration

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method is to extract the working mixture and then to measure the oil weight. In this study, oil concentration is measured in si.tu way without any extraction of the working fluid. Based on the measurement, a working equation is presented as follows, C=a +b x t +c x $t^2$ +(d + e x t +f x $t^2$) x SG. C is oil concentration, t is temperature($^{\circ}C). SG Is specific gravity of mixture and a~f is coefficients The oil concentration ranges over 0~l2 wt% and the temperature ranges over 20~50$^{\circ}C. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/P0E oil liquid mixtures.

  • PDF

Evaluation on Nutritional Balance by the Rate of Mixed Oil in Korean Style Broiled Beef and Pork by the Self-Developed Computer Program (한식육류구이용 양념장에 이용된 기름의 혼합율에 따른 지방의 영양균형성 평가)

  • Kim, Kap-Young
    • Korean Journal of Human Ecology
    • /
    • v.10 no.1
    • /
    • pp.81-87
    • /
    • 2007
  • This study was designed to evaluate the balance of fatty acids for the Korean style broiled beef and pork ingredient of the rate of mixture oil with sesame oil, soybean oil and perilla oil, by self-developed computer program. Each 3 kinds of Korean style broiled beef and pork by the rate of mixure oil with sesame oil, soybean oil and perilla oil, were evaluated by using the self-developed computer program. Contents of calories were 415.6kcal in Korean style broiled beef, 656.3 kcal in Korean style broiled pork. The mean of protein were 41.35g, Korean style broiled beef, 32.66g, Korean style broiled pork. The ratio of C/P/F ratio of Korean style broiled beef and pork, 21/ 40/ 39, 10/ 20/ 70. The mean P/ M/ S of fatty acids in Korean style broiled beef and pork ratio was similar $0.4{\sim}0.5/\;1.4{\sim}1.5/\;1$. The ${\omega}6/{\omega}3$ ratio of fatty acids of Korean style broiled beef and pork using sesame oil was 54.3, 56.9 much higher than desirable $level(4{\sim}8)$. But the ${\omega}6/{\omega}3$ ratio of fatty acids of Korean style broiled beef using mixture oil with sesame oil, soybean oil and perilla oil were 4.6, 4.2 desirable $level(4{\sim}8)$, Korean style broiled pork using mixture oil with sesame oil, soybean oil and perilla oil were 3.0, 6.2. It means the ${\omega}6/{\omega}3$ ratio of fatty acids of Korean style broiled beef and pork was improved of desirable level respectively by using the mixture oil with sesame oil, soybean oil and perilla oil, than using sesame oil.

  • PDF

An Experimental Study on Oil Separation Characteristics of $CO_2$/P AG Oil Mixture in an Oil Separator

  • Kang, Byung-Ha;Kim, Kyung-Jae;Lee, Sung-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.88-93
    • /
    • 2009
  • Lubricant oil is needed in air conditioning and refrigeration system because the compressor requires oil to prevent surface to surface contact between its moving parts, to remove heat, to provide sealing, to keep out contaminants, to prevent corrosion, and to dispose of debris created by wear. Thus, the oil separation in an oil separator is one of the most important characteristics for proper compressor operation. In this study, a gravity type of oil separator is used. Oil separation characteristics have been investigated for $CO_2$/PAG mixture in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$ at 50 bar and $70^{\circ}C$ to $90^{\circ}C$ at 80 bar. The results obtained indicate that the oil separation is increased with an increase in the oil concentration. It is also found that the oil separation in liquid state is increased with an increase in the mixture temperature while the oil separation in gas state is decreased.

An Experimental Study on Oil Separation Characteristics of $CO_2$/PAG Oil Mixture in the Oil Separator (오일 분리기에서 $CO_2$/PAG오일 혼합물의 오일 분리특성에 관한 실험적 연구)

  • Kim, Kyung-Jae;Lee, Sung-Kwang;Cho, Eun-Young;Kang, Byung-Ha;Kim, Suk hyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.131-136
    • /
    • 2008
  • The oil separation in an oil separator is one of the most important characteristics for proper compressor operation. In this study, a gravity type of oil separator is used. Oil separation characteristics has been investigated for $CO_2$/PAG mixture in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $5^{\circ}C$ to $15^{\circ}C$ and $70^{\circ}C$ to $90^{\circ}C$. The results obtained indicate that the oil separation is increased with an increase in the oil concentration. It is also found that the oil separation in liquid state is increased with an increase in the mixture temperature while the oil separation in gas state is decreased.

  • PDF

An Experimental Study on PAG Oil Separation Characteristics of an Oil Separator for a $CO_2$ Refrigeration system ($CO_2$ 냉동시스템의 오일 분리기에서 PAG오일 분리 특성에 관한 실험적 연구)

  • Cho, Eun-Young;Lee, Sung-Kwang;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.271-276
    • /
    • 2008
  • The oil trap in oil separator is one of the most important characteristics for normal operation of compressor. In this study, oil separation characteristics has been investigated for $CO_2$/PAG mixture using a gravity type of oil separator. The experimental study has been carried out in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that oil separation ratio in oil separator is increased with an increase in the oil concentration and mixture temperature.

  • PDF

An investigation on the in si·tu measurement of the oil-concentration with densimeter (밀도계를 이용한 비추출식 냉동기유농도 측정에 관한 연구)

  • Kim, S.H.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method to measure the oil concentration is to extract the working mixture and then to measure the oil weight. However, it is Quite necessary to estimate oil concentration without any extraction of the working fluid. In this study a new method and working equation is presented as follows. It is based on the measurement of spedific gravity and temperature : $$C=a+b{\times}t+c{\times}t^2+(d+e{\times}t+f{\times}t^2){\times}SG$$ C is oil concentration, t is temperature($^{\circ}C$), SG is specific gravity of mixture and a~f is coefficients. The oil concentration ranges over 0~12 wt% and the temperature ranges over $20{\sim}50^{\circ}C$. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/POE oil oiquid mixtures.

  • PDF

Study of Dielectric Properties of a Potential RBD Palm Oil and RBD Soybean Oil Mixture as Insulating Liquid in Transformer

  • Azmi, Kiasatina;Ahmad, Azmier;Kamarol, Mohamad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2105-2119
    • /
    • 2015
  • This paper reported the experimental result of dielectric properties of Refined, Bleached and Deodorized Palm Oil (RBDPO) combined with 0-50% of Refined, Bleached and Deodorized Soybean Oil (RBDSO). The dielectric strength and relative permittivity of RBDPO/RBDSO was higher compared to mineral oil at all ranges of ratios and temperatures which indicated a positive sign for its possible use as insulating liquid in a transformer. All ratios of the RBDPO/RBDSO mixture also demonstrated lower dissipation factor compared to mineral oil at 40℃, 70℃ and 90℃. Apart from that, the kinematic viscosity for the oil mixtures shown exceeded the IEC 60296 as well as the mineral oil results. 70%RBDPO/30%RBDSO mixture ratio was chosen as the best mixing percentage after comparison was made with the mineral oil and IEC 60296 standard where the mixture accumulated the most satisfactory of dielectric properties hence making it as the potential candidate for palm and soybean-based transformer oil.

The Biodegradation Characteristics of the Mixtures of Bunker-A, B Oils with Dispersants in the Seawater

  • BAEK Joong-Soo;KIM Gwang-Su;CHO Eun-il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.787-796
    • /
    • 1996
  • The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-A oil and Bunker-B oil were conducted to study the biodegradation characteristics of a mixture of Bunker-A oil with dispersant and a mixture of Bunker-B oil with dispersant in the seawater. The results of biodegradation experiment showed 1mg of dispersant to be equivalent to 0.26 mg of $BOD_5$ and to 0.60 mg of $BOD_{20}$ in the natural seawater. The results of TOD analysis showed each 1 mg of dispersant, Bunker-A oil and Bunker-B oil to be equivalent to 2.37 mg, 2.94 mg and 2.74 mg of TOD, respectively. The results of element analysis showed carbon, hydrogen, nitrogen and phosphorus contents of dispersant to be $82.1\%,\;13.8\%,\;1.8\%\;and\;2.2\%$, respectively. Carbon and hydrogen contents of Bunker-A oil were found to be $73.3\%\;and\;13.5\%$, respectively, and carbon, hydrogen and nitrogen contents of Bunker-B oil to be $80.4\%,\;12.3\%\;and\;0.7\%$, respectively. Accordingly, the detection of nitrogen and phosphorus in dispersant shows that dispersants should be used with caution in coastal waters, with relation to eutrophication. The biodegradability of dispersant expressed as the ratio of $BOD_5/TOD$ was found to be $11.0\%$. As the mix ratios of dispersant to Bunker-A oil (3 mg/l) and a mixture of Bunker-B oil (3mg/l) were changed from 1 : 10 to 5 : 10, the biodegradabilities of a mixture of Bunker-A oil with dispersant and Bunker-B oil with dispersant increased from $2.1\%\;to\;7.2\%$ and from $1.0\%\;to\;4.4\%$, respectively. Accordingly, the dispersant belongs to the organic matter group of middle-biodegradability while mixtures in the mix ratio range of $1:10\~5:10$ belong to the organic matter group of low-biodegradability. The deoxygenation rate constant $(K_1)$ and ultimate biochemical oxygen demand $(L_0)$ obtained from the biodegradation experiment and Thomas slope method were found to be 0.125/day and 2.487 mg/l for dispersant (4 mg/l), respectively. $K_1\;and\;L_0$, were found to be $0.079\~0.131/day$ and $0.318\~2.052\;mg/l$ for a mixture of Bunker-A oil with dispersant and to be $0.106\~0.371/day$ and $0.262\~1.106\;mg/l$ for a mixture of Bunker-B oil with dispersant, respectively, having $1:10\~5:10$ mix ratios of dispersant to Bunker-A oil and Bunker-B oil. The ultimate biochemical oxygen demands of the mixtures increased as the mix ratio of dispersant to Bunker-A, B oils changed from 1 : 10 to 5 : 10. This suggests that the more dispersants are applied to the sea for the cleanup of Bunker-A oil or Bunker-B oil, the more decreases the dissolved oxygen level in the seawater.

  • PDF

Gas cooling heat transfer coefficient for $CO_2$-PEC9 mixture under supercritical condition (초임계조건에서 $CO_2$-PEC9 혼합물의 물성예측을 통한 냉각 열전달특성 연구)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.821-826
    • /
    • 2009
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus actual working fluid in the system is $CO_2$-oil mixtures even though the oil concentrations are low at the heat exchangers and the expansion device. The cooling heat transfer coefficients for $CO_2$-oil mixtures under supercritical condition are required to designing of the gas cooler in the $CO_2$ refrigeration system properly. In the present study, the gas cooling heat transfer coefficients for $CO_2$-PEC9 was estimated by using the Gnileinski correlation, and the Kim and Ghajar model through the previous prediction models for the thermo-physical properties of $CO_2$-oil mixture. The Gnileinski correlation was used when the oil wt.% in the mixture is less than 1.0, and for the higher oil concentration the Kim and Ghajar model was applied. The estimated results agree with the experimental results conducted by the Dang et al.

  • PDF